\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ergodic geometry for non-elementary rank one manifolds

Abstract Related Papers Cited by
  • Let $X$ be a Hadamard manifold, and $\Gamma\subset Is(X)$ a non-elementary discrete subgroup of isometries of $X$ which contains a rank one isometry. We relate the ergodic theory of the geodesic flow of the quotient orbifold $M=X/\Gamma$ to the behavior of the Poincaré series of $\Gamma$. Precisely, the aim of this paper is to extend the so-called theorem of Hopf-Tsuji-Sullivan -- well-known for manifolds of pinched negative curvature -- to the framework of rank one orbifolds. Moreover, we derive some important properties for $\Gamma$-invariant conformal densities supported on the geometric limit set of $\Gamma$.
    Mathematics Subject Classification: Primary: 37D40, 28D20; Secondary: 37D25, 20F67.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. Aaronson and M. Denker, The Poincaré series of $\mathbb C\setminus \mathbb Z$, Ergodic Theory Dynam. Systems, 19 (1999), 1-20.doi: 10.1017/S0143385799126592.

    [2]

    W. Ballmann, Axial isometries of manifolds of nonpositive curvature, Math. Ann., 259 (1982), 131-144.doi: 10.1007/BF01456836.

    [3]

    W. Ballmann, Nonpositively curved manifolds of higher rank, Ann. of Math. (2), 122 (1985), 597-609.doi: 10.2307/1971331.

    [4]

    W. Ballmann, Lectures on Spaces of Nonpositive Curvature, vol. 25 of DMV Seminar, Birkhäuser Verlag, Basel, 1995, With an appendix by Misha Brin.doi: 10.1007/978-3-0348-9240-7.

    [5]

    W. Ballmann, M. Brin and P. Eberlein, Structure of manifolds of nonpositive curvature. I, Ann. of Math. (2), 122 (1985), 171-203.doi: 10.2307/1971373.

    [6]

    W. Ballmann, M. Gromov and V. Schroeder, Manifolds of Nonpositive Curvature, vol. 61 of Progress in Mathematics, Birkhäuser Boston Inc., Boston, MA, 1985.doi: 10.1007/978-1-4684-9159-3.

    [7]

    V. Bangert and V. Schroeder, Existence of flat tori in analytic manifolds of nonpositive curvature, Ann. Sci. École Norm. Sup. (4), 24 (1991), 605-634.

    [8]

    M. Bourdon, Structure conforme au bord et flot géodésique d'un $CAT(-1)$-espace, Enseign. Math. (2), 41 (1995), 63-102.

    [9]

    K. Burns, Hyperbolic behaviour of geodesic flows on manifolds with no focal points, Ergodic Theory Dynam. Systems, 3 (1983), 1-12.doi: 10.1017/S0143385700001796.

    [10]

    K. Burns and R. Spatzier, Manifolds of nonpositive curvature and their buildings, Inst. Hautes Études Sci. Publ. Math., 35-59.

    [11]

    M. Coornaert and A. Papadopoulos, Une dichotomie de Hopf pour les flots géodésiques associés aux groupes discrets d'isométries des arbres, Trans. Amer. Math. Soc., 343 (1994), 883-898.doi: 10.2307/2154747.

    [12]

    F. Dal'bo, J.-P. Otal and M. Peigné, Séries de Poincaré des groupes géométriquement finis, Israel J. Math., 118 (2000), 109-124.doi: 10.1007/BF02803518.

    [13]

    P. Eberlein, Surfaces of nonpositive curvature, Mem. Amer. Math. Soc., 20 (1979), x+90.doi: 10.1090/memo/0218.

    [14]

    E. Hopf, Ergodentheorie, Springer, 1937.doi: 10.1007/978-3-642-86630-2.

    [15]

    E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Amer. Math. Soc., 77 (1971), 863-877.doi: 10.1090/S0002-9904-1971-12799-4.

    [16]

    V. A. Kaimanovich, Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, J. Reine Angew. Math., 455 (1994), 57-103.doi: 10.1515/crll.1994.455.57.

    [17]

    G. Knieper, On the asymptotic geometry of nonpositively curved manifolds, Geom. Funct. Anal., 7 (1997), 755-782.doi: 10.1007/s000390050025.

    [18]

    G. Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank $1$ manifolds, Ann. of Math. (2), 148 (1998), 291-314.doi: 10.2307/120995.

    [19]

    U. Krengel, Ergodic Theorems, vol. 6 of de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, 1985, With a supplement by Antoine Brunel.doi: 10.1515/9783110844641.

    [20]

    G. Link, Asymptotic geometry and growth of conjugacy classes of nonpositively curved manifolds, Ann. Global Anal. Geom., 31 (2007), 37-57.doi: 10.1007/s10455-006-9016-x.

    [21]

    G. Link, M. Peigné and J.-C. Picaud, Sur les surfaces non-compactes de rang un, Enseign. Math. (2), 52 (2006), 3-36.

    [22]

    P. J. Nicholls, The Ergodic Theory of Discrete Groups, vol. 143 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1989.doi: 10.1017/CBO9780511600678.

    [23]

    J.-P. Otal and M. Peigné, Principe variationnel et groupes kleiniens, Duke Math. J., 125 (2004), 15-44.doi: 10.1215/S0012-7094-04-12512-6.

    [24]

    S. J. Patterson, The limit set of a Fuchsian group, Acta Math., 136 (1976), 241-273.doi: 10.1007/BF02392046.

    [25]

    T. Roblin, Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (N.S.), vi+96.

    [26]

    T. Roblin, Un théorème de Fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative, Israel J. Math., 147 (2005), 333-357.doi: 10.1007/BF02785371.

    [27]

    V. Schroeder, Existence of immersed tori in manifolds of nonpositive curvature, J. Reine Angew. Math., 390 (1988), 32-46.doi: 10.1515/crll.1988.390.32.

    [28]

    V. Schroeder, Structure of flat subspaces in low-dimensional manifolds of nonpositive curvature, Manuscripta Math., 64 (1989), 77-105.doi: 10.1007/BF01182086.

    [29]

    V. Schroeder, Codimension one tori in manifolds of nonpositive curvature, Geom. Dedicata, 33 (1990), 251-263.doi: 10.1007/BF00181332.

    [30]

    D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math., 171-202.

    [31]

    M. E. Taylor, Measure Theory and Integration, vol. 76 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2006.doi: 10.1090/gsm/076.

    [32]

    M. Tsuji, Potential Theory in Modern Function Theory, Chelsea Publishing Co., New York, 1975, Reprinting of the 1959 original.

    [33]

    C. Yue, The ergodic theory of discrete isometry groups on manifolds of variable negative curvature, Trans. Amer. Math. Soc., 348 (1996), 4965-5005.doi: 10.1090/S0002-9947-96-01614-5.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(328) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return