# American Institute of Mathematical Sciences

November  2016, 36(11): 6599-6622. doi: 10.3934/dcds.2016086

## Weakly hyperbolic invariant tori for two dimensional quasiperiodically forced maps in a degenerate case

 1 School of Mathematics and Statistics, Qingdao University, Qingdao, Shandong 266071, China 2 Departament of Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Barcelona 3 School of Mathematics, Shandong University, Jinan, Shandong 250100

Received  November 2013 Revised  May 2016 Published  August 2016

In this work we consider a class of degenerate analytic maps of the form \begin{eqnarray*} \left\{ \begin{array}{l} \bar{x} =x+y^{m}+\epsilon f_1(x,y,\theta,\epsilon)+h_1(x,y,\theta,\epsilon),\\ \bar{y}=y+x^{n}+\epsilon f_2(x,y,\theta,\epsilon)+h_2(x,y,\theta,\epsilon),\\ \bar{\theta}=\theta+\omega, \end{array} \right. \end{eqnarray*} where $mn>1,n\geq m,$ $h_1 \ \mbox{and} \ h_2$ are of order $n+1$ in $z,$ and $\omega=(\omega_1,\omega_2,\ldots,\omega_{d})\in \Bbb{R}^{d}$ is a vector of rationally independent frequencies. It is shown that, under a generic non-degeneracy condition on $f$, if $\omega$ is Diophantine and $\epsilon>0$ is small enough, the map has at least one weakly hyperbolic invariant torus.
Citation: Tingting Zhang, Àngel Jorba, Jianguo Si. Weakly hyperbolic invariant tori for two dimensional quasiperiodically forced maps in a degenerate case. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6599-6622. doi: 10.3934/dcds.2016086
##### References:
 [1] I. Baldomà, E. Fontich and P. Martín, Stable manifolds for parabolic points through the parameterization method, Preprint. [2] M. Ding, C. Grebogi and E. Ott, Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange non-chaotic to chaotic, Phys. Rev. A, 39 (1989), 2593-2598. doi: 10.1103/PhysRevA.39.2593. [3] P. Glendinning, The non-smooth pitchork bifurcation, Discrete Contin. Dyn. Syst. Ser. B, 6 (2002), 1-7. [4] M. Guardia, P. Martín and T.M. Seara, Oscillatory motions for the restricted planar circular three body problem, Invent. Math., 203 (2016), 417-492. doi: 10.1007/s00222-015-0591-y. [5] À. Haro and J. Puig, Strange nonchaotic attractors in Harper maps, Chaos, 16 (2006). Available from: https://www.researchgate.net/publication/6781348_Strange_Nonchaotic_Attractors_in_Harper_Maps. doi: 10.1063/1.2259821. [6] À. Jorba, P. Rabassa and J. C. Tatjer, Superstable periodic orbits of 1d maps under quasi-periodic forcing and reducibility loss, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 589-597. doi: 10.3934/dcds.2014.34.589. [7] À. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differential Equations, 98 (1992), 111-124. doi: 10.1016/0022-0396(92)90107-X. [8] À. Jorba and C. Simó, On quasiperiodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal., 27 (1996), 1704-1737. doi: 10.1137/S0036141094276913. [9] À. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567. doi: 10.3934/dcdsb.2008.10.537. [10] À. Jorba and J. Villanueva, On the persistence of lower dimensional invariant tori under quasi-periodic perturbations, J. Nonlinear Sci., 7 (1997), 427-473. doi: 10.1007/s003329900036. [11] L. M. Lerman, On remarks of skew products over irrational rotation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3675-3689. doi: 10.1142/S0218127405014118. [12] R. Martínez and C. Pinyol, Parabolic orbits in the elliptic restricted three body problem, J. Differential Equations, 111 (1994), 299-339. doi: 10.1006/jdeq.1994.1084. [13] R. Martínez and C. Simó, Invariant manifolds at infinity of the RTBP and the boundaries of bounded motion, Regul. Chaotic Dyn., 19 (2014), 745-765. doi: 10.1134/S1560354714060112. [14] U. Vaidya and I. Mezić, Existence of invariant tori in three dimensional maps with degeneracy, Phys. D, 241 (2012), 1136-1145. doi: 10.1016/j.physd.2012.03.004. [15] J. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point, J. Differential Equations, 250 (2011), 551-571. doi: 10.1016/j.jde.2010.09.030. [16] J. Xu, On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar system, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 2593-2619. doi: 10.3934/dcds.2013.33.2593. [17] J. Xu and S. Jiang, Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation, Ergodic Theory Dynam. Systems, 31 (2011), 599-611. doi: 10.1017/S0143385709001114. [18] J. Xu and Q. Zheng, On the reducibility of linear differential equations with quasiperiodic coefficients which are degenerate, Proc. Amer. Math. Soc., 126 (1998), 1445-1451. doi: 10.1090/S0002-9939-98-04523-7. [19] J. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in hamiltonian systems, Comm. Math. Phys., 192 (1998), 145-168. doi: 10.1007/s002200050294.

show all references

##### References:
 [1] I. Baldomà, E. Fontich and P. Martín, Stable manifolds for parabolic points through the parameterization method, Preprint. [2] M. Ding, C. Grebogi and E. Ott, Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange non-chaotic to chaotic, Phys. Rev. A, 39 (1989), 2593-2598. doi: 10.1103/PhysRevA.39.2593. [3] P. Glendinning, The non-smooth pitchork bifurcation, Discrete Contin. Dyn. Syst. Ser. B, 6 (2002), 1-7. [4] M. Guardia, P. Martín and T.M. Seara, Oscillatory motions for the restricted planar circular three body problem, Invent. Math., 203 (2016), 417-492. doi: 10.1007/s00222-015-0591-y. [5] À. Haro and J. Puig, Strange nonchaotic attractors in Harper maps, Chaos, 16 (2006). Available from: https://www.researchgate.net/publication/6781348_Strange_Nonchaotic_Attractors_in_Harper_Maps. doi: 10.1063/1.2259821. [6] À. Jorba, P. Rabassa and J. C. Tatjer, Superstable periodic orbits of 1d maps under quasi-periodic forcing and reducibility loss, Discrete Contin. Dyn. Syst. Ser. A, 34 (2014), 589-597. doi: 10.3934/dcds.2014.34.589. [7] À. Jorba and C. Simó, On the reducibility of linear differential equations with quasiperiodic coefficients, J. Differential Equations, 98 (1992), 111-124. doi: 10.1016/0022-0396(92)90107-X. [8] À. Jorba and C. Simó, On quasiperiodic perturbations of elliptic equilibrium points, SIAM J. Math. Anal., 27 (1996), 1704-1737. doi: 10.1137/S0036141094276913. [9] À. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567. doi: 10.3934/dcdsb.2008.10.537. [10] À. Jorba and J. Villanueva, On the persistence of lower dimensional invariant tori under quasi-periodic perturbations, J. Nonlinear Sci., 7 (1997), 427-473. doi: 10.1007/s003329900036. [11] L. M. Lerman, On remarks of skew products over irrational rotation, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15 (2005), 3675-3689. doi: 10.1142/S0218127405014118. [12] R. Martínez and C. Pinyol, Parabolic orbits in the elliptic restricted three body problem, J. Differential Equations, 111 (1994), 299-339. doi: 10.1006/jdeq.1994.1084. [13] R. Martínez and C. Simó, Invariant manifolds at infinity of the RTBP and the boundaries of bounded motion, Regul. Chaotic Dyn., 19 (2014), 745-765. doi: 10.1134/S1560354714060112. [14] U. Vaidya and I. Mezić, Existence of invariant tori in three dimensional maps with degeneracy, Phys. D, 241 (2012), 1136-1145. doi: 10.1016/j.physd.2012.03.004. [15] J. Xu, On small perturbation of two-dimensional quasi-periodic systems with hyperbolic-type degenerate equilibrium point, J. Differential Equations, 250 (2011), 551-571. doi: 10.1016/j.jde.2010.09.030. [16] J. Xu, On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar system, Discrete Contin. Dyn. Syst. Ser. A, 33 (2013), 2593-2619. doi: 10.3934/dcds.2013.33.2593. [17] J. Xu and S. Jiang, Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation, Ergodic Theory Dynam. Systems, 31 (2011), 599-611. doi: 10.1017/S0143385709001114. [18] J. Xu and Q. Zheng, On the reducibility of linear differential equations with quasiperiodic coefficients which are degenerate, Proc. Amer. Math. Soc., 126 (1998), 1445-1451. doi: 10.1090/S0002-9939-98-04523-7. [19] J. You, A KAM theorem for hyperbolic-type degenerate lower dimensional tori in hamiltonian systems, Comm. Math. Phys., 192 (1998), 145-168. doi: 10.1007/s002200050294.
 [1] Inmaculada Baldomá, Ernest Fontich, Pau Martín. Gevrey estimates for one dimensional parabolic invariant manifolds of non-hyperbolic fixed points. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4159-4190. doi: 10.3934/dcds.2017177 [2] Helmut Rüssmann. KAM iteration with nearly infinitely small steps in dynamical systems of polynomial character. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 683-718. doi: 10.3934/dcdss.2010.3.683 [3] Lei Wang, Quan Yuan, Jia Li. Persistence of the hyperbolic lower dimensional non-twist invariant torus in a class of Hamiltonian systems. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1233-1250. doi: 10.3934/cpaa.2016.15.1233 [4] Jordi-Lluís Figueras, Àlex Haro. A note on the fractalization of saddle invariant curves in quasiperiodic systems. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1095-1107. doi: 10.3934/dcdss.2016043 [5] Anna Cima, Armengol Gasull, Víctor Mañosa. Parrondo's dynamic paradox for the stability of non-hyperbolic fixed points. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 889-904. doi: 10.3934/dcds.2018038 [6] Inmaculada Baldomá, Ernest Fontich, Rafael de la Llave, Pau Martín. The parameterization method for one- dimensional invariant manifolds of higher dimensional parabolic fixed points. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 835-865. doi: 10.3934/dcds.2007.17.835 [7] Wen Si, Fenfen Wang, Jianguo Si. Almost-periodic perturbations of non-hyperbolic equilibrium points via Pöschel-Rüssmann KAM method. Communications on Pure and Applied Analysis, 2020, 19 (1) : 541-585. doi: 10.3934/cpaa.2020027 [8] Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371 [9] Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568 [10] John Franks, Michael Handel, Kamlesh Parwani. Fixed points of Abelian actions. Journal of Modern Dynamics, 2007, 1 (3) : 443-464. doi: 10.3934/jmd.2007.1.443 [11] Hongzi Cong, Lufang Mi, Yunfeng Shi, Yuan Wu. On the existence of full dimensional KAM torus for nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6599-6630. doi: 10.3934/dcds.2019287 [12] Xiaolong Li, Katsutoshi Shinohara. On super-exponential divergence of periodic points for partially hyperbolic systems. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1707-1729. doi: 10.3934/dcds.2021169 [13] Alexey A. Petrov, Sergei Yu. Pilyugin. Shadowing near nonhyperbolic fixed points. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3761-3772. doi: 10.3934/dcds.2014.34.3761 [14] M. Burak Erdoğan, Nikolaos Tzirakis. Long time dynamics for forced and weakly damped KdV on the torus. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2669-2684. doi: 10.3934/cpaa.2013.12.2669 [15] M. L. Bertotti, Sergey V. Bolotin. Chaotic trajectories for natural systems on a torus. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1343-1357. doi: 10.3934/dcds.2003.9.1343 [16] Juan Campos, Rafael Ortega. Location of fixed points and periodic solutions in the plane. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 517-523. doi: 10.3934/dcdsb.2008.9.517 [17] Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, 2021, 29 (4) : 2553-2560. doi: 10.3934/era.2021001 [18] Harry Dankowicz, Jan Sieber. Sensitivity analysis for periodic orbits and quasiperiodic invariant tori using the adjoint method. Journal of Computational Dynamics, 2022, 9 (3) : 329-369. doi: 10.3934/jcd.2022006 [19] Meina Gao, Jianjun Liu. A degenerate KAM theorem for partial differential equations with periodic boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5911-5928. doi: 10.3934/dcds.2020252 [20] Wenxiang Sun, Yun Yang. Hyperbolic periodic points for chain hyperbolic homoclinic classes. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3911-3925. doi: 10.3934/dcds.2016.36.3911

2021 Impact Factor: 1.588