December  2016, 36(12): 6623-6643. doi: 10.3934/dcds.2016087

The influence of magnetic steps on bulk superconductivity

1. 

Lund University, Department of Mathematics, Box 118, SE-22100, Lund, Sweden

2. 

Lebanese University, Department of Mathematics, Hadath, Lebanon

Received  January 2016 Revised  March 2016 Published  October 2016

We study the distribution of bulk superconductivity in presence of an applied magnetic field, supposed to be a step function, modeled by the Ginzburg-Landau theory. Our results are valid for the minimizers of the two-dimensional Ginzburg-Landau functional with a large Ginzburg-Landau parameter and with an applied magnetic field of intensity comparable with the Ginzburg-Landau parameter.
Citation: Wafaa Assaad, Ayman Kachmar. The influence of magnetic steps on bulk superconductivity. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6623-6643. doi: 10.3934/dcds.2016087
References:
[1]

Y. Almog, B. Helffer and X. B. Pan, Mixed normal-superconducting states in the presence of strong electric currents, Arch. Rational Mech. Anal. (2016). doi:10.1007/s00205-016-1037-4

[2]

K. Attar, The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field, Ann. I.H.Poincaré-AN, 32 (2015), 325-345. doi: 10.1016/j.anihpc.2013.12.002.

[3]

K. Attar, Energy and vorticity of the Ginzburg-Landau model with variable magnetic field, Asympt. Anal., 93 (2015), 75-114. doi: 10.3233/ASY-151286.

[4]

K. Attar, Pinning with a variable magnetic field of the two dimensional Ginzburg-Landau model, Non-Linear Analysis: TMA., 139 (2016), 1-54. doi: 10.1016/j.na.2016.02.002.

[5]

V. Bonnaillie-Noël and S. Fournais, Superconductivity in domains with corners, Rev. Math. Phys., 19 (2007), 607-637. doi: 10.1142/S0129055X07003061.

[6]

S. J. Chapman, Q. Du and M. D. Gunzburger, A Ginzburg-Landau type model of superconducting/normal junctions including Josephson junctions, European Journal of Applied Mathematics, 6 (1995), 97-114. doi: 10.1017/S0956792500001716.

[7]

A. Contreras and X. Lamy, Persistence of superconductivity in thin shells beyond Hc1, Commun. Contemp. Math., 18 (2016),1550047, 21pp. doi: 10.1142/S0219199715500479.

[8]

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, Progress in Nonlinear Differential Equations and their Applications. Vol. 77, Birkhäuser, Boston, 2010.

[9]

S. Fournais and A. Kachmar, The ground state energy of the three dimensional Ginzburg-Landau functional. Part I: Bulk regime, Commun. Part. Diff. Equations, 38 (2013), 339-383. doi: 10.1080/03605302.2012.717156.

[10]

S. Fournais and A. Kachmar, Nucleation of bulk superconductivity close to critical magnetic field, Adv. Math., 226 (2011), 1213-1258. doi: 10.1016/j.aim.2010.08.004.

[11]

S. Fournais and A. Kachmar, On the transition to the normal phase for superconductors surrounded by normal conductors, J. Differential Equations, 247 (2009), 1637-1672. doi: 10.1016/j.jde.2009.04.012.

[12]

T. Giorgi and D. Phillips, The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal., 30 (1999), 341-359. doi: 10.1137/S0036141097323163.

[13]

B. Helffer and A. Mohamed, Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal., 138 (1996), 40-81. doi: 10.1006/jfan.1996.0056.

[14]

B. Helffer and A. Kachmar, The ginzburg-landau functional with vanishing magnetic field, Arch. Rational Mech. Anal., 218 (2015), 55-122. doi: 10.1007/s00205-015-0856-z.

[15]

P. D. Hislop, N. Popoff, N. Raymond and M. P. Sundqvist, Band functions in presence of magnetic steps, Mathematical Models and Methods in Applied Sciences, 26 (2016), 161-184. doi: 10.1142/S0218202516500056.

[16]

A. Kachmar, The ground state energy of the three-dimensional Ginzburg-Landau model in the mixed phase, J. Funct. Anal., 261 (2011), 3328-3344. doi: 10.1016/j.jfa.2011.08.002.

[17]

A. Kachmar, On the perfect superconducting solution for a generalized Ginzburg-Landau equation, Asymptot. Anal., 54 (2007), 125-164.

[18]

K. Lu and X. B. Pan, Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity, Physica D, 127 (1999), 73-104. doi: 10.1016/S0167-2789(98)00246-2.

[19]

K. Lu and X. B. Pan, Surface nucleation of superconductivity in 3-dimension, J. Differential Equations, 168 (2000), 386-452. doi: 10.1006/jdeq.2000.3892.

[20]

X. B. Pan and K. H. Kwek, Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains, Tran. Amer. Math. Soc., 354 (2002), 4201-4227. doi: 10.1090/S0002-9947-02-03033-7.

[21]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Vol. 343. American Mathematical Soc., 2001. doi: 10.1090/chel/343.

[22]

E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model, Progress in Nonlinear Partial Differential Equations and Their Applications. Vol. 70, Birkhäuser, 2007.

[23]

E. Sandier and S. Serfaty, The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model, SIAM J. Math. Anal., 34 (2003), 939-956. doi: 10.1137/S0036141002406084.

show all references

References:
[1]

Y. Almog, B. Helffer and X. B. Pan, Mixed normal-superconducting states in the presence of strong electric currents, Arch. Rational Mech. Anal. (2016). doi:10.1007/s00205-016-1037-4

[2]

K. Attar, The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic field, Ann. I.H.Poincaré-AN, 32 (2015), 325-345. doi: 10.1016/j.anihpc.2013.12.002.

[3]

K. Attar, Energy and vorticity of the Ginzburg-Landau model with variable magnetic field, Asympt. Anal., 93 (2015), 75-114. doi: 10.3233/ASY-151286.

[4]

K. Attar, Pinning with a variable magnetic field of the two dimensional Ginzburg-Landau model, Non-Linear Analysis: TMA., 139 (2016), 1-54. doi: 10.1016/j.na.2016.02.002.

[5]

V. Bonnaillie-Noël and S. Fournais, Superconductivity in domains with corners, Rev. Math. Phys., 19 (2007), 607-637. doi: 10.1142/S0129055X07003061.

[6]

S. J. Chapman, Q. Du and M. D. Gunzburger, A Ginzburg-Landau type model of superconducting/normal junctions including Josephson junctions, European Journal of Applied Mathematics, 6 (1995), 97-114. doi: 10.1017/S0956792500001716.

[7]

A. Contreras and X. Lamy, Persistence of superconductivity in thin shells beyond Hc1, Commun. Contemp. Math., 18 (2016),1550047, 21pp. doi: 10.1142/S0219199715500479.

[8]

S. Fournais and B. Helffer, Spectral Methods in Surface Superconductivity, Progress in Nonlinear Differential Equations and their Applications. Vol. 77, Birkhäuser, Boston, 2010.

[9]

S. Fournais and A. Kachmar, The ground state energy of the three dimensional Ginzburg-Landau functional. Part I: Bulk regime, Commun. Part. Diff. Equations, 38 (2013), 339-383. doi: 10.1080/03605302.2012.717156.

[10]

S. Fournais and A. Kachmar, Nucleation of bulk superconductivity close to critical magnetic field, Adv. Math., 226 (2011), 1213-1258. doi: 10.1016/j.aim.2010.08.004.

[11]

S. Fournais and A. Kachmar, On the transition to the normal phase for superconductors surrounded by normal conductors, J. Differential Equations, 247 (2009), 1637-1672. doi: 10.1016/j.jde.2009.04.012.

[12]

T. Giorgi and D. Phillips, The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal., 30 (1999), 341-359. doi: 10.1137/S0036141097323163.

[13]

B. Helffer and A. Mohamed, Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal., 138 (1996), 40-81. doi: 10.1006/jfan.1996.0056.

[14]

B. Helffer and A. Kachmar, The ginzburg-landau functional with vanishing magnetic field, Arch. Rational Mech. Anal., 218 (2015), 55-122. doi: 10.1007/s00205-015-0856-z.

[15]

P. D. Hislop, N. Popoff, N. Raymond and M. P. Sundqvist, Band functions in presence of magnetic steps, Mathematical Models and Methods in Applied Sciences, 26 (2016), 161-184. doi: 10.1142/S0218202516500056.

[16]

A. Kachmar, The ground state energy of the three-dimensional Ginzburg-Landau model in the mixed phase, J. Funct. Anal., 261 (2011), 3328-3344. doi: 10.1016/j.jfa.2011.08.002.

[17]

A. Kachmar, On the perfect superconducting solution for a generalized Ginzburg-Landau equation, Asymptot. Anal., 54 (2007), 125-164.

[18]

K. Lu and X. B. Pan, Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity, Physica D, 127 (1999), 73-104. doi: 10.1016/S0167-2789(98)00246-2.

[19]

K. Lu and X. B. Pan, Surface nucleation of superconductivity in 3-dimension, J. Differential Equations, 168 (2000), 386-452. doi: 10.1006/jdeq.2000.3892.

[20]

X. B. Pan and K. H. Kwek, Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains, Tran. Amer. Math. Soc., 354 (2002), 4201-4227. doi: 10.1090/S0002-9947-02-03033-7.

[21]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Vol. 343. American Mathematical Soc., 2001. doi: 10.1090/chel/343.

[22]

E. Sandier and S. Serfaty, Vortices in the Magnetic Ginzburg-Landau Model, Progress in Nonlinear Partial Differential Equations and Their Applications. Vol. 70, Birkhäuser, 2007.

[23]

E. Sandier and S. Serfaty, The decrease of bulk superconductivity close to the second critical field in the Ginzburg-Landau model, SIAM J. Math. Anal., 34 (2003), 939-956. doi: 10.1137/S0036141002406084.

[1]

Hassen Aydi, Ayman Kachmar. Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II. Communications on Pure and Applied Analysis, 2009, 8 (3) : 977-998. doi: 10.3934/cpaa.2009.8.977

[2]

Giacomo Canevari, Antonio Segatti. Motion of vortices for the extrinsic Ginzburg-Landau flow for vector fields on surfaces. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2087-2116. doi: 10.3934/dcdss.2022116

[3]

Shujuan Lü, Chunbiao Gan, Baohua Wang, Linning Qian, Meisheng Li. Traveling wave solutions and its stability for 3D Ginzburg-Landau type equation. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 507-527. doi: 10.3934/dcdsb.2011.16.507

[4]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[5]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[6]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[7]

Jingna Li, Li Xia. The Fractional Ginzburg-Landau equation with distributional initial data. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2173-2187. doi: 10.3934/cpaa.2013.12.2173

[8]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure and Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[9]

Jun Yang. Vortex structures for Klein-Gordon equation with Ginzburg-Landau nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2359-2388. doi: 10.3934/dcds.2014.34.2359

[10]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[11]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[12]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2021-2038. doi: 10.3934/cpaa.2021056

[13]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[14]

Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks and Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715

[15]

Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121

[16]

Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5621-5632. doi: 10.3934/dcdsb.2019075

[17]

Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579

[18]

Michael Stich, Carsten Beta. Standing waves in a complex Ginzburg-Landau equation with time-delay feedback. Conference Publications, 2011, 2011 (Special) : 1329-1334. doi: 10.3934/proc.2011.2011.1329

[19]

N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711

[20]

Boling Guo, Bixiang Wang. Gevrey regularity and approximate inertial manifolds for the derivative Ginzburg-Landau equation in two spatial dimensions. Discrete and Continuous Dynamical Systems, 1996, 2 (4) : 455-466. doi: 10.3934/dcds.1996.2.455

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (151)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]