Advanced Search
Article Contents
Article Contents

Stability of global equilibrium for the multi-species Boltzmann equation in $L^\infty$ settings

Abstract Related Papers Cited by
  • We prove the stability of global equilibrium in a multi-species mixture, where the different species can have different masses, on the $3$-dimensional torus. We establish stability estimates in $L^\infty_{x,v}(w)$ where $w=w(v)$ is either polynomial or exponential, with explicit threshold. Along the way we extend recent estimates and stability results for the mono-species Boltzmann operator not only to the multi-species case but also to more general hard potential and Maxwellian kernels.
    Mathematics Subject Classification: Primary: 35B40, 35Q20; Secondary: 76P05, 82C40.


    \begin{equation} \\ \end{equation}
  • [1]

    C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841, URL http://projecteuclid.org/getRecord?id=euclid.rmi/1136999132.doi: 10.4171/RMI/436.


    A. V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann equation for hard spheres, Eur. J. Mech. B Fluids, 18 (1999), 869-887.doi: 10.1016/S0997-7546(99)00121-1.


    A. Bobylev, I. Gamba and V. Panferov, Moment inequalities and high-energy tails for boltzmann equations with inelastic interactions, Journal of Statistical Physics, 116 (2004), 1651-1682.doi: 10.1023/B:JOSS.0000041751.11664.ea.


    L. Boudin, B. Grec, M. Pavić and F. Salvarani, Diffusion asymptotics of a kinetic model for gaseous mixtures, Kinetic and Related Models, 6 (2013), 137-157, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=8004.doi: 10.3934/krm.2013.6.137.


    L. Boudin, B. Grec and F. Salvarani, The maxwell-stefan diffusion limit for a kinetic model of mixtures, Acta Applicandae Mathematicae, 136 (2015), 79-90.doi: 10.1007/s10440-014-9886-z.


    M. Briant, Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions, Preprint 2015.


    M. Briant and E. Daus, The Boltzmann equation for multi-species mixture close to global equilibrium, Arch. Ration. Mech. Anal., 222 (2016), 1367-1443.doi: 10.1007/s00205-016-1023-x.


    M. Briant and Y. Guo, Asymptotic stability of the boltzmann equation with maxwell boundary conditions, Preprint 2016.


    C. Cercignani, The Boltzmann Equation and Its Applications, vol. 67 of Applied Mathematical Sciences, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4612-1039-9.


    C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994.doi: 10.1007/978-1-4419-8524-8.


    E. S. Daus, A. Jüngel, C. Mouhot and N. Zamponi, Hypocoercivity for a linearized multispecies Boltzmann system, SIAM J. Math. Anal., 48 (2016), 538-568.doi: 10.1137/15M1017934.


    L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005), 219-236.doi: 10.1016/j.euromechflu.2004.07.004.


    I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013.


    H. Grad, Principles of the kinetic theory of gases, in Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, Springer-Verlag, Berlin, 1958, 205-294.


    M. P. Gualdani, S. Mischler and C. Mouhot, Factorization for non-symmetric operators and exponential H-theorem, arXiv:1006.5523, Preprint 2013.


    O. E. Lanford III, Time evolution of large classical systems, in Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), Springer, Berlin, Lecture Notes in Phys., 38 (1975), 1-111.


    C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006), 1321-1348.doi: 10.1080/03605300600635004.


    M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Rev. Math. Phys., 26 (2014), 1450001, 64pp.doi: 10.1142/S0129055X14500019.


    S. Ukai and T. YangMathematical Theory of the Boltzmann Equation, 2006, Lecture Notes Series, no. 8, Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong.


    C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid dynamics, North-Holland, Amsterdam, 1 (2002), 71-305.doi: 10.1016/S1874-5792(02)80004-0.

  • 加载中

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint