-
Previous Article
Calderón-Zygmund estimate for homogenization of parabolic systems
- DCDS Home
- This Issue
-
Next Article
Linear response in the intermittent family: Differentiation in a weighted $C^0$-norm
Stability of global equilibrium for the multi-species Boltzmann equation in $L^\infty$ settings
1. | Sorbonne Universités, UPMC Univ. Paris 06/ CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France |
References:
[1] |
C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841, URL http://projecteuclid.org/getRecord?id=euclid.rmi/1136999132.
doi: 10.4171/RMI/436. |
[2] |
A. V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann equation for hard spheres, Eur. J. Mech. B Fluids, 18 (1999), 869-887.
doi: 10.1016/S0997-7546(99)00121-1. |
[3] |
A. Bobylev, I. Gamba and V. Panferov, Moment inequalities and high-energy tails for boltzmann equations with inelastic interactions, Journal of Statistical Physics, 116 (2004), 1651-1682.
doi: 10.1023/B:JOSS.0000041751.11664.ea. |
[4] |
L. Boudin, B. Grec, M. Pavić and F. Salvarani, Diffusion asymptotics of a kinetic model for gaseous mixtures, Kinetic and Related Models, 6 (2013), 137-157, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=8004.
doi: 10.3934/krm.2013.6.137. |
[5] |
L. Boudin, B. Grec and F. Salvarani, The maxwell-stefan diffusion limit for a kinetic model of mixtures, Acta Applicandae Mathematicae, 136 (2015), 79-90.
doi: 10.1007/s10440-014-9886-z. |
[6] |
M. Briant, Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions, Preprint 2015. |
[7] |
M. Briant and E. Daus, The Boltzmann equation for multi-species mixture close to global equilibrium, Arch. Ration. Mech. Anal., 222 (2016), 1367-1443.
doi: 10.1007/s00205-016-1023-x. |
[8] |
M. Briant and Y. Guo, Asymptotic stability of the boltzmann equation with maxwell boundary conditions, Preprint 2016. |
[9] |
C. Cercignani, The Boltzmann Equation and Its Applications, vol. 67 of Applied Mathematical Sciences, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4612-1039-9. |
[10] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[11] |
E. S. Daus, A. Jüngel, C. Mouhot and N. Zamponi, Hypocoercivity for a linearized multispecies Boltzmann system, SIAM J. Math. Anal., 48 (2016), 538-568.
doi: 10.1137/15M1017934. |
[12] |
L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005), 219-236.
doi: 10.1016/j.euromechflu.2004.07.004. |
[13] |
I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013. |
[14] |
H. Grad, Principles of the kinetic theory of gases, in Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, Springer-Verlag, Berlin, 1958, 205-294. |
[15] |
M. P. Gualdani, S. Mischler and C. Mouhot, Factorization for non-symmetric operators and exponential H-theorem, arXiv:1006.5523, Preprint 2013. |
[16] |
O. E. Lanford III, Time evolution of large classical systems, in Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), Springer, Berlin, Lecture Notes in Phys., 38 (1975), 1-111. |
[17] |
C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006), 1321-1348.
doi: 10.1080/03605300600635004. |
[18] |
M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Rev. Math. Phys., 26 (2014), 1450001, 64pp.
doi: 10.1142/S0129055X14500019. |
[19] |
S. Ukai and T. Yang, Mathematical Theory of the Boltzmann Equation, 2006,, Lecture Notes Series, ().
|
[20] |
C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid dynamics, North-Holland, Amsterdam, 1 (2002), 71-305.
doi: 10.1016/S1874-5792(02)80004-0. |
show all references
References:
[1] |
C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials, Rev. Mat. Iberoamericana, 21 (2005), 819-841, URL http://projecteuclid.org/getRecord?id=euclid.rmi/1136999132.
doi: 10.4171/RMI/436. |
[2] |
A. V. Bobylev and S. Rjasanow, Fast deterministic method of solving the Boltzmann equation for hard spheres, Eur. J. Mech. B Fluids, 18 (1999), 869-887.
doi: 10.1016/S0997-7546(99)00121-1. |
[3] |
A. Bobylev, I. Gamba and V. Panferov, Moment inequalities and high-energy tails for boltzmann equations with inelastic interactions, Journal of Statistical Physics, 116 (2004), 1651-1682.
doi: 10.1023/B:JOSS.0000041751.11664.ea. |
[4] |
L. Boudin, B. Grec, M. Pavić and F. Salvarani, Diffusion asymptotics of a kinetic model for gaseous mixtures, Kinetic and Related Models, 6 (2013), 137-157, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=8004.
doi: 10.3934/krm.2013.6.137. |
[5] |
L. Boudin, B. Grec and F. Salvarani, The maxwell-stefan diffusion limit for a kinetic model of mixtures, Acta Applicandae Mathematicae, 136 (2015), 79-90.
doi: 10.1007/s10440-014-9886-z. |
[6] |
M. Briant, Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions, Preprint 2015. |
[7] |
M. Briant and E. Daus, The Boltzmann equation for multi-species mixture close to global equilibrium, Arch. Ration. Mech. Anal., 222 (2016), 1367-1443.
doi: 10.1007/s00205-016-1023-x. |
[8] |
M. Briant and Y. Guo, Asymptotic stability of the boltzmann equation with maxwell boundary conditions, Preprint 2016. |
[9] |
C. Cercignani, The Boltzmann Equation and Its Applications, vol. 67 of Applied Mathematical Sciences, Springer-Verlag, New York, 1988.
doi: 10.1007/978-1-4612-1039-9. |
[10] |
C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, vol. 106 of Applied Mathematical Sciences, Springer-Verlag, New York, 1994.
doi: 10.1007/978-1-4419-8524-8. |
[11] |
E. S. Daus, A. Jüngel, C. Mouhot and N. Zamponi, Hypocoercivity for a linearized multispecies Boltzmann system, SIAM J. Math. Anal., 48 (2016), 538-568.
doi: 10.1137/15M1017934. |
[12] |
L. Desvillettes, R. Monaco and F. Salvarani, A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions, Eur. J. Mech. B Fluids, 24 (2005), 219-236.
doi: 10.1016/j.euromechflu.2004.07.004. |
[13] |
I. Gallagher, L. Saint-Raymond and B. Texier, From Newton to Boltzmann: Hard Spheres and Short-Range Potentials, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2013. |
[14] |
H. Grad, Principles of the kinetic theory of gases, in Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase, Springer-Verlag, Berlin, 1958, 205-294. |
[15] |
M. P. Gualdani, S. Mischler and C. Mouhot, Factorization for non-symmetric operators and exponential H-theorem, arXiv:1006.5523, Preprint 2013. |
[16] |
O. E. Lanford III, Time evolution of large classical systems, in Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974), Springer, Berlin, Lecture Notes in Phys., 38 (1975), 1-111. |
[17] |
C. Mouhot, Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, 31 (2006), 1321-1348.
doi: 10.1080/03605300600635004. |
[18] |
M. Pulvirenti, C. Saffirio and S. Simonella, On the validity of the Boltzmann equation for short range potentials, Rev. Math. Phys., 26 (2014), 1450001, 64pp.
doi: 10.1142/S0129055X14500019. |
[19] |
S. Ukai and T. Yang, Mathematical Theory of the Boltzmann Equation, 2006,, Lecture Notes Series, ().
|
[20] |
C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of mathematical fluid dynamics, North-Holland, Amsterdam, 1 (2002), 71-305.
doi: 10.1016/S1874-5792(02)80004-0. |
[1] |
Andrea Bondesan, Laurent Boudin, Marc Briant, Bérénice Grec. Stability of the spectral gap for the Boltzmann multi-species operator linearized around non-equilibrium maxwell distributions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2549-2573. doi: 10.3934/cpaa.2020112 |
[2] |
Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic and Related Models, 2017, 10 (2) : 329-371. doi: 10.3934/krm.2017014 |
[3] |
Gi-Chan Bae, Christian Klingenberg, Marlies Pirner, Seok-Bae Yun. BGK model of the multi-species Uehling-Uhlenbeck equation. Kinetic and Related Models, 2021, 14 (1) : 25-44. doi: 10.3934/krm.2020047 |
[4] |
Seung-Yeal Ha, Ho Lee, Seok Bae Yun. Uniform $L^p$-stability theory for the space-inhomogeneous Boltzmann equation with external forces. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 115-143. doi: 10.3934/dcds.2009.24.115 |
[5] |
Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic and Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673 |
[6] |
David M. Chan, Matt McCombs, Sarah Boegner, Hye Jin Ban, Suzanne L. Robertson. Extinction in discrete, competitive, multi-species patch models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1583-1590. doi: 10.3934/dcdsb.2015.20.1583 |
[7] |
Koya Nishimura. Global existence for the Boltzmann equation in $ L^r_v L^\infty_t L^\infty_x $ spaces. Communications on Pure and Applied Analysis, 2019, 18 (4) : 1769-1782. doi: 10.3934/cpaa.2019083 |
[8] |
Seung-Yeal Ha, Eunhee Jeong, Robert M. Strain. Uniform $L^1$-stability of the relativistic Boltzmann equation near vacuum. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1141-1161. doi: 10.3934/cpaa.2013.12.1141 |
[9] |
Raffaele Esposito, Yan Guo, Rossana Marra. Stability of a Vlasov-Boltzmann binary mixture at the phase transition on an interval. Kinetic and Related Models, 2013, 6 (4) : 761-787. doi: 10.3934/krm.2013.6.761 |
[10] |
Soohyun Bae. Weighted $L^\infty$ stability of positive steady states of a semilinear heat equation in $\R^n$. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 823-837. doi: 10.3934/dcds.2010.26.823 |
[11] |
Heung Wing Joseph Lee, Chi Kin Chan, Karho Yau, Kar Hung Wong, Colin Myburgh. Control parametrization and finite element method for controlling multi-species reactive transport in a circular pool. Journal of Industrial and Management Optimization, 2013, 9 (3) : 505-524. doi: 10.3934/jimo.2013.9.505 |
[12] |
Raimund Bürger, Kenneth H. Karlsen, John D. Towers. On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux. Networks and Heterogeneous Media, 2010, 5 (3) : 461-485. doi: 10.3934/nhm.2010.5.461 |
[13] |
Guo Lin, Wan-Tong Li, Mingju Ma. Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 393-414. doi: 10.3934/dcdsb.2010.13.393 |
[14] |
Shaofei Wu, Mingqing Wang, Maozhu Jin, Yuntao Zou, Lijun Song. Uniform $L^1$ stability of the inelastic Boltzmann equation with large external force for hard potentials. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1005-1013. doi: 10.3934/dcdss.2019068 |
[15] |
Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations and Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365 |
[16] |
Kevin Zumbrun. L∞ resolvent bounds for steady Boltzmann's Equation. Kinetic and Related Models, 2017, 10 (4) : 1255-1257. doi: 10.3934/krm.2017048 |
[17] |
Yong-Kum Cho. On the Boltzmann equation with the symmetric stable Lévy process. Kinetic and Related Models, 2015, 8 (1) : 53-77. doi: 10.3934/krm.2015.8.53 |
[18] |
El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic and Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401 |
[19] |
Seung-Yeal Ha, Mitsuru Yamazaki. $L^p$-stability estimates for the spatially inhomogeneous discrete velocity Boltzmann model. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 353-364. doi: 10.3934/dcdsb.2009.11.353 |
[20] |
Miguel Escobedo, Minh-Binh Tran. Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinetic and Related Models, 2015, 8 (3) : 493-531. doi: 10.3934/krm.2015.8.493 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]