Advanced Search
Article Contents
Article Contents

Eigenvalues for a nonlocal pseudo $p-$Laplacian

Abstract Related Papers Cited by
  • In this paper we study the eigenvalue problems for a nonlocal operator of order $s$ that is analogous to the local pseudo $p-$Laplacian. We show that there is a sequence of eigenvalues $\lambda_n \to \infty$ and that the first one is positive, simple, isolated and has a positive and bounded associated eigenfunction. For the first eigenvalue we also analyze the limits as $p\to \infty$ (obtaining a limit nonlocal eigenvalue problem analogous to the pseudo infinity Laplacian) and as $s\to 1^-$ (obtaining the first eigenvalue for a local operator of $p-$Laplacian type). To perform this study we have to introduce anisotropic fractional Sobolev spaces and prove some of their properties.
    Mathematics Subject Classification: Primary: 35P30, 35J92, 35R11.


    \begin{equation} \\ \end{equation}
  • [1]

    S. Amghibech, On the discrete version of Picone's identity, Discrete Appl. Math., 156 (2008), 1-10.doi: 10.1016/j.dam.2007.05.013.


    A. Anane, Simplicité et isolation de la première valeur propre du $p-$laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 725-728.


    G. Aronsson, M. G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc., 41 (2004), 439-505.doi: 10.1090/S0273-0979-04-01035-3.


    M. Belloni and B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as $p\to \infty$, ESAIM Control Optim. Calc. Var. 10 (2004), 28-52.doi: 10.1051/cocv:2003035.


    T. Bhattacharya, E. Di Benedetto and J. Manfredi, Limits as $p \to \infty$ of $\Delta_p u_p = f$ and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino, (1991), 15-68.


    G. Bouchitte, G. Buttazzo and L. De Pasquale., A $p-$laplacian approximation for some mass optimization problems, J. Optim. Theory Appl., 118 (2003), 1-25.doi: 10.1023/A:1024751022715.


    L. Brasco and G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37 (2014), 769-799.doi: 10.2996/kmj/1414674621.


    L. Brasco, E. Parini and M. Squassina, Stability of variational eigenvalues for the fractional $p-$Laplacian, Discr. Cont. Dyn. Sys., 36 (2016), 1813-1845.doi: 10.3934/dcds.2016.36.1813.


    H. Brezis, Analyse fonctionnelle, Masson, Paris, 1983.


    J. Bourgain, H. Brezis and P. Mironescu, Another look at sobolev spaces, in Optimal Control and Partial Differential Equations, 2001, 439-455.


    A. Chambolle, E. Lindgren and R. Monneau, The Holder infinite Laplacian and Holder extensions, ESAIM-COCV, 18 (2012), 799-835.doi: 10.1051/cocv/2011182.


    M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.doi: 10.1090/S0273-0979-1992-00266-5.


    F. Della Pietra and N. Gavitone, Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators, Math. Nachr., 287 (2014), 194-209.doi: 10.1002/mana.201200296.


    F. Demengel and G. Demengel, Functional spaces for the theory of elliptic partial differential equations, Universitext, Springer, London, 2012, Translated from the 2007 French original by Reinie Erné.doi: 10.1007/978-1-4471-2807-6.


    A. Di Castro, T. Kuusi and G. Palatucci, Local behavior of fractional $p$-minimizers, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1279-1299.doi: 10.1016/j.anihpc.2015.04.003.


    E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.doi: 10.1016/j.bulsci.2011.12.004.


    S. Dipierro, X. Ros-Oton and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, to appear in Rev. Mat. Iberoam..


    L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc., 137 (1999), viii+66 pp.doi: 10.1090/memo/0653.


    L. C. Evans and C. K. Smart, Everywhere differentiability of infinity harmonic functions, Calc. Var. Partial Differential Equations, 42 (2011), 289-299.doi: 10.1007/s00526-010-0388-1.


    L. C. Evans and C. K. Smart, Adjoint methods for the infinity Laplacian partial differential equation, Arch. Ration. Mech. Anal., 201 (2011), 87-113.doi: 10.1007/s00205-011-0399-x.


    J. Garcia-Azorero and I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term, Trans. Amer. Math. Soc., 323 (1991), 877-895.doi: 10.1090/S0002-9947-1991-1083144-2.


    G. Franzina and G. Palatucci, Fractional p-eigenvalues, Riv. Math. Univ. Parma (N.S.), 5 (2014), 373-386.


    A. Iannizzotto, S. Mosconi, and M. Squassina, Global Hölder regularity for the fractional $p-$Laplacian, to appear in Rev. Mat. Iberoam.


    J. Jaros, Picone's identity for a Finsler p-Laplacian and comparison of nonlinear elliptic equations, Math. Bohem.,139 (2014), 535-552.


    H. Jylha, An optimal transportation problem related to the limits of solutions of local and nonlocal $p-$Laplace- type problems, Rev. Mat. Complutense, 28 (2015), 85-121.doi: 10.1007/s13163-014-0147-5.


    P. Juutinen, P. Lindqvist and J. J. Manfredi, The $\infty-$eigenvalue problem, Arch. Rational Mech. Anal., 148 (1999), 89-105.doi: 10.1007/s002050050157.


    P. Juutinen and P. Lindqvist, On the higher eigenvalues for the $\infty-$eigenvalue problem, Calc. Var. Partial Differential Equations, 23 (2005), 169-192.doi: 10.1007/s00526-004-0295-4.


    E. Lindgren and P. Lindqvist, Fractional eigenvalues, Calc. Var. Partial Differential Equations, 49 (2014), 795-826.doi: 10.1007/s00526-013-0600-1.


    G. Molica Bisci, Sequence of weak solutions for fractional equations, Math. Research Lett., 21 (2014), 241-253.doi: 10.4310/MRL.2014.v21.n2.a3.


    G. Molica Bisci, Fractional equations with bounded primitive, Appl. Math. Lett., 27 (2014), 53-58.doi: 10.1016/j.aml.2013.07.011.


    G. Molica Bisci and B. A. Pansera, Three weak solutions for nonlocal fractional equations, Adv. Nonlinear Stud., 14 (2014), 619-629.


    M. Moussa, Schwarz rearrangement does not decrease the energy for the pseudo $p-$Laplacian operator, Bol. Soc. Parana. Mat. (3), 29 (2011), 49-53.doi: 10.5269/bspm.v29i1.10428.


    J. D. Rossi and M. Saez, Optimal regularity for the pseudo infinity Laplacian, ESAIM. Control, Opt. Calc. Var., COCV., 13 (2007), 294-304.doi: 10.1051/cocv:2007018.


    O. Savin, $C^1$ regularity for infinity harmonic functions in two dimensions, Arch. Rational Mech. Anal., 176 (2005), 351-361.doi: 10.1007/s00205-005-0355-8.

  • 加载中

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint