December  2016, 36(12): 6767-6780. doi: 10.3934/dcds.2016094

Classification of positive solutions to a Lane-Emden type integral system with negative exponents

1. 

School of Statistics, Xi'an University of Finance and Economics, Xi'an, Shaanxi, 710100

2. 

School of National Fiscal Development, Central University of Finance and Economics, Beijing 100081, China

3. 

School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, United States

Received  January 2016 Revised  April 2016 Published  October 2016

In this paper, we classify the positive solutions to the following Lane-Emden type integral system with negative exponents \begin{equation*} \begin{cases} u(x)&= \displaystyle \int_{\mathbb{R}^{n}}|x-y|^{\tau} u^{-p}(y)v^{-q}(y) \, dy, ~x\in \mathbb{R}^{n}, \\ v(x)&= \displaystyle \int_{\mathbb{R}^{n}}|x-y|^{\tau}u^{-r}(y)v^{-s}(y) \, dy,~ x\in \mathbb{R}^{n}, \end{cases} \end{equation*}where $n \geq 1$ is an integer and $ \tau, p,q,r,s>0.$ Particularly, using an integral form of the method of moving spheres, we classify the positive solutions to the integral system whenever $$p+q=r+s=1 + 2n/\tau.$$ We also establish the non-existence of positive solutions under the condition $$\max\{p+q,r+s\} \leq 1 + 2n/\tau \,\text{ and }\, p + q + r + s < 2(1 + 2n/\tau).$$
Citation: Jingbo Dou, Fangfang Ren, John Villavert. Classification of positive solutions to a Lane-Emden type integral system with negative exponents. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6767-6780. doi: 10.3934/dcds.2016094
References:
[1]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67. doi: 10.1007/s00032-008-0090-3.

[2]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.

[3]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.

[4]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst, 12 (2005), 347-354.

[5]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture, Discrete Contin. Dyn. Syst., 24 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.

[6]

J. Dou, Liouville type theorems for the system of integral equations, Appl. Math. Comput., 217 (2010), 2586-2594. doi: 10.1016/j.amc.2010.07.071.

[7]

J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not., 3 (2015), 651-687.

[8]

J. Dou and M. Zhu, Reversed Hardy-Littlewood-Sobolev inequality, Int. Math. Res. Not., 19 (2015), 9696-9726. doi: 10.1093/imrn/rnu241.

[9]

M. Ghergu, Lane-Emden systems with negative exponents, J. Funct. Anal., 258 (2010), 3295-3318. doi: 10.1016/j.jfa.2010.02.003.

[10]

Y. Han and M. Zhu, Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications. J. Differential Equations, 260 (2016), 1-25. doi: 10.1016/j.jde.2015.06.032.

[11]

F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007), 373-383. doi: 10.4310/MRL.2007.v14.n3.a2.

[12]

Y. Lei, On the integral systems with negative exponents, Discrete Contin. Dyn. Syst., 35 (2015), 1039-1057. doi: 10.3934/dcds.2015.35.1039.

[13]

Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315. doi: 10.3934/dcds.2016.36.3277.

[14]

C. Li and J. Villavert, A degree theory framework for semilinear elliptic systems, Proc. Amer. Math. Soc., 144 (2016), 3731-3740. doi: 10.1090/proc/13166.

[15]

C. Li and J. Villavert, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Comm. Partial Differential Equations, 41 (2016), 1029-1039. doi: 10.1080/03605302.2016.1190376.

[16]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417. doi: 10.1215/S0012-7094-95-08016-8.

[17]

Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. Anal. Math., 90 (2003), 27-87. doi: 10.1007/BF02786551.

[18]

Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc. (JEMS), 6 (2004), 153-180.

[19]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032.

[20]

J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems, J. Partial Differential Equations, 19 (2006), 256-270.

[21]

L. Ma and D. Chen, A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5 (2006), 855-859. doi: 10.3934/cpaa.2006.5.855.

[22]

Q. A. Ngô and V. H. Nguyen, Sharp Reversed Hardy-Littlewood-Sobolev inequality on $\mathbfR^n$,, Israel J. Math., (). 

[23]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228. doi: 10.1007/s002080050258.

[24]

X. Xu, Uniqueness theorem for integral equations and its application, J. Funct. Anal., 247 (2007), 95-109. doi: 10.1016/j.jfa.2007.03.005.

[25]

Z. Zhang, Positive solutions of Lane-Emden systems with negative exponents: Existence, boundary behavior and uniqueness, Nonlinear Anal., 74 (2011), 5544-5553. doi: 10.1016/j.na.2011.05.038.

show all references

References:
[1]

G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67. doi: 10.1007/s00032-008-0090-3.

[2]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343. doi: 10.1002/cpa.20116.

[3]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65. doi: 10.1081/PDE-200044445.

[4]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst, 12 (2005), 347-354.

[5]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture, Discrete Contin. Dyn. Syst., 24 (2009), 1167-1184. doi: 10.3934/dcds.2009.24.1167.

[6]

J. Dou, Liouville type theorems for the system of integral equations, Appl. Math. Comput., 217 (2010), 2586-2594. doi: 10.1016/j.amc.2010.07.071.

[7]

J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not., 3 (2015), 651-687.

[8]

J. Dou and M. Zhu, Reversed Hardy-Littlewood-Sobolev inequality, Int. Math. Res. Not., 19 (2015), 9696-9726. doi: 10.1093/imrn/rnu241.

[9]

M. Ghergu, Lane-Emden systems with negative exponents, J. Funct. Anal., 258 (2010), 3295-3318. doi: 10.1016/j.jfa.2010.02.003.

[10]

Y. Han and M. Zhu, Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications. J. Differential Equations, 260 (2016), 1-25. doi: 10.1016/j.jde.2015.06.032.

[11]

F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007), 373-383. doi: 10.4310/MRL.2007.v14.n3.a2.

[12]

Y. Lei, On the integral systems with negative exponents, Discrete Contin. Dyn. Syst., 35 (2015), 1039-1057. doi: 10.3934/dcds.2015.35.1039.

[13]

Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315. doi: 10.3934/dcds.2016.36.3277.

[14]

C. Li and J. Villavert, A degree theory framework for semilinear elliptic systems, Proc. Amer. Math. Soc., 144 (2016), 3731-3740. doi: 10.1090/proc/13166.

[15]

C. Li and J. Villavert, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Comm. Partial Differential Equations, 41 (2016), 1029-1039. doi: 10.1080/03605302.2016.1190376.

[16]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417. doi: 10.1215/S0012-7094-95-08016-8.

[17]

Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. Anal. Math., 90 (2003), 27-87. doi: 10.1007/BF02786551.

[18]

Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc. (JEMS), 6 (2004), 153-180.

[19]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374. doi: 10.2307/2007032.

[20]

J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems, J. Partial Differential Equations, 19 (2006), 256-270.

[21]

L. Ma and D. Chen, A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5 (2006), 855-859. doi: 10.3934/cpaa.2006.5.855.

[22]

Q. A. Ngô and V. H. Nguyen, Sharp Reversed Hardy-Littlewood-Sobolev inequality on $\mathbfR^n$,, Israel J. Math., (). 

[23]

J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228. doi: 10.1007/s002080050258.

[24]

X. Xu, Uniqueness theorem for integral equations and its application, J. Funct. Anal., 247 (2007), 95-109. doi: 10.1016/j.jfa.2007.03.005.

[25]

Z. Zhang, Positive solutions of Lane-Emden systems with negative exponents: Existence, boundary behavior and uniqueness, Nonlinear Anal., 74 (2011), 5544-5553. doi: 10.1016/j.na.2011.05.038.

[1]

Wenxiong Chen, Congming Li. An integral system and the Lane-Emden conjecture. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1167-1184. doi: 10.3934/dcds.2009.24.1167

[2]

Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1681-1698. doi: 10.3934/cpaa.2021036

[3]

Wenjing Chen, Louis Dupaigne, Marius Ghergu. A new critical curve for the Lane-Emden system. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2469-2479. doi: 10.3934/dcds.2014.34.2469

[4]

Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058

[5]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[6]

Hatem Hajlaoui, Abdellaziz Harrabi, Foued Mtiri. Liouville theorems for stable solutions of the weighted Lane-Emden system. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 265-279. doi: 10.3934/dcds.2017011

[7]

Philip Korman, Junping Shi. On lane-emden type systems. Conference Publications, 2005, 2005 (Special) : 510-517. doi: 10.3934/proc.2005.2005.510

[8]

Yuxia Guo, Ting Liu. Liouville-type theorem for high order degenerate Lane-Emden system. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2073-2100. doi: 10.3934/dcds.2021184

[9]

Lu Chen, Guozhen Lu, Yansheng Shen. Sharp subcritical Sobolev inequalities and uniqueness of nonnegative solutions to high-order Lane-Emden equations on $ \mathbb{S}^n $. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022073

[10]

Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure and Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1

[11]

Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051

[12]

Salim A. Messaoudi, Ala A. Talahmeh. Blow up of negative initial-energy solutions of a system of nonlinear wave equations with variable-exponent nonlinearities. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1233-1245. doi: 10.3934/dcdss.2021107

[13]

Igor Freire, Ben Muatjetjeja. Symmetry analysis of a Lane-Emden-Klein-Gordon-Fock system with central symmetry. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 667-673. doi: 10.3934/dcdss.2018041

[14]

Mostafa Fazly, Nassif Ghoussoub. On the Hénon-Lane-Emden conjecture. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2513-2533. doi: 10.3934/dcds.2014.34.2513

[15]

Yutian Lei. On the integral systems with negative exponents. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1039-1057. doi: 10.3934/dcds.2015.35.1039

[16]

Filomena Pacella, Dora Salazar. Asymptotic behaviour of sign changing radial solutions of Lane Emden Problems in the annulus. Discrete and Continuous Dynamical Systems - S, 2014, 7 (4) : 793-805. doi: 10.3934/dcdss.2014.7.793

[17]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[18]

Baiyu Liu. Direct method of moving planes for logarithmic Laplacian system in bounded domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5339-5349. doi: 10.3934/dcds.2018235

[19]

Pengyan Wang, Pengcheng Niu. A direct method of moving planes for a fully nonlinear nonlocal system. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1707-1718. doi: 10.3934/cpaa.2017082

[20]

Meixia Dou. A direct method of moving planes for fractional Laplacian equations in the unit ball. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1797-1807. doi: 10.3934/cpaa.2016015

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]