\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Classification of positive solutions to a Lane-Emden type integral system with negative exponents

Abstract Related Papers Cited by
  • In this paper, we classify the positive solutions to the following Lane-Emden type integral system with negative exponents \begin{equation*} \begin{cases} u(x)&= \displaystyle \int_{\mathbb{R}^{n}}|x-y|^{\tau} u^{-p}(y)v^{-q}(y) \, dy, ~x\in \mathbb{R}^{n}, \\ v(x)&= \displaystyle \int_{\mathbb{R}^{n}}|x-y|^{\tau}u^{-r}(y)v^{-s}(y) \, dy,~ x\in \mathbb{R}^{n}, \end{cases} \end{equation*}where $n \geq 1$ is an integer and $ \tau, p,q,r,s>0.$ Particularly, using an integral form of the method of moving spheres, we classify the positive solutions to the integral system whenever $$p+q=r+s=1 + 2n/\tau.$$ We also establish the non-existence of positive solutions under the condition $$\max\{p+q,r+s\} \leq 1 + 2n/\tau \,\text{ and }\, p + q + r + s < 2(1 + 2n/\tau).$$
    Mathematics Subject Classification: Primary: 45G15; Secondary: 35B65, 35B53.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems, Milan J. Math., 76 (2008), 27-67.doi: 10.1007/s00032-008-0090-3.

    [2]

    W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.doi: 10.1002/cpa.20116.

    [3]

    W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Differential Equations, 30 (2005), 59-65.doi: 10.1081/PDE-200044445.

    [4]

    W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation, Discrete Contin. Dyn. Syst, 12 (2005), 347-354.

    [5]

    W. Chen and C. Li, An integral system and the Lane-Emdem conjecture, Discrete Contin. Dyn. Syst., 24 (2009), 1167-1184.doi: 10.3934/dcds.2009.24.1167.

    [6]

    J. Dou, Liouville type theorems for the system of integral equations, Appl. Math. Comput., 217 (2010), 2586-2594.doi: 10.1016/j.amc.2010.07.071.

    [7]

    J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Not., 3 (2015), 651-687.

    [8]

    J. Dou and M. Zhu, Reversed Hardy-Littlewood-Sobolev inequality, Int. Math. Res. Not., 19 (2015), 9696-9726.doi: 10.1093/imrn/rnu241.

    [9]

    M. Ghergu, Lane-Emden systems with negative exponents, J. Funct. Anal., 258 (2010), 3295-3318.doi: 10.1016/j.jfa.2010.02.003.

    [10]

    Y. Han and M. Zhu, Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications. J. Differential Equations, 260 (2016), 1-25.doi: 10.1016/j.jde.2015.06.032.

    [11]

    F. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007), 373-383.doi: 10.4310/MRL.2007.v14.n3.a2.

    [12]

    Y. Lei, On the integral systems with negative exponents, Discrete Contin. Dyn. Syst., 35 (2015), 1039-1057.doi: 10.3934/dcds.2015.35.1039.

    [13]

    Y. Lei and C. Li, Sharp criteria of Liouville type for some nonlinear systems, Discrete Contin. Dyn. Syst., 36 (2016), 3277-3315.doi: 10.3934/dcds.2016.36.3277.

    [14]

    C. Li and J. Villavert, A degree theory framework for semilinear elliptic systems, Proc. Amer. Math. Soc., 144 (2016), 3731-3740.doi: 10.1090/proc/13166.

    [15]

    C. Li and J. Villavert, Existence of positive solutions to semilinear elliptic systems with supercritical growth, Comm. Partial Differential Equations, 41 (2016), 1029-1039.doi: 10.1080/03605302.2016.1190376.

    [16]

    Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.doi: 10.1215/S0012-7094-95-08016-8.

    [17]

    Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. Anal. Math., 90 (2003), 27-87.doi: 10.1007/BF02786551.

    [18]

    Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc. (JEMS), 6 (2004), 153-180.

    [19]

    E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., 118 (1983), 349-374.doi: 10.2307/2007032.

    [20]

    J. Liu, Y. Guo and Y. Zhang, Existence of positive entire solutions for polyharmonic equations and systems, J. Partial Differential Equations, 19 (2006), 256-270.

    [21]

    L. Ma and D. Chen, A Liouville type theorem for an integral system, Commun. Pure Appl. Anal., 5 (2006), 855-859.doi: 10.3934/cpaa.2006.5.855.

    [22]

    Q. A. Ngô and V. H. Nguyen, Sharp Reversed Hardy-Littlewood-Sobolev inequality on $\mathbfR^n$, Israel J. Math., To Appear.

    [23]

    J. Wei and X. Xu, Classification of solutions of higher order conformally invariant equations, Math. Ann., 313 (1999), 207-228.doi: 10.1007/s002080050258.

    [24]

    X. Xu, Uniqueness theorem for integral equations and its application, J. Funct. Anal., 247 (2007), 95-109.doi: 10.1016/j.jfa.2007.03.005.

    [25]

    Z. Zhang, Positive solutions of Lane-Emden systems with negative exponents: Existence, boundary behavior and uniqueness, Nonlinear Anal., 74 (2011), 5544-5553.doi: 10.1016/j.na.2011.05.038.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return