December  2016, 36(12): 6799-6833. doi: 10.3934/dcds.2016096

Gradient flow structure for McKean-Vlasov equations on discrete spaces

1. 

University of Bonn, Institute for Applied Mathematics, Endenicher Allee 60, 53115 Bonn

2. 

University of California, Berkeley, Evans Hall, Berkeley, California 94720-3840, United States

3. 

Weierstrass Institut, Mohrenstraße 39, 10117 Berlin, Germany

4. 

University of Bonn, Germany, Endenicher Allee 60, 53115 Bonn, Germany

Received  January 2016 Revised  August 2016 Published  October 2016

In this work, we show that a family of non-linear mean-field equations on discrete spaces can be viewed as a gradient flow of a natural free energy functional with respect to a certain metric structure we make explicit. We also prove that this gradient flow structure arises as the limit of the gradient flow structures of a natural sequence of $N$-particle dynamics, as $N$ goes to infinity.
Citation: Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 6799-6833. doi: 10.3934/dcds.2016096
References:
[1]

S. Adams, N. Dirr, M. A. Peletier and J. Zimmer, From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage, Comm. Math. Phys., 307 (2011), 791-815. doi: 10.1007/s00220-011-1328-4.  Google Scholar

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. doi: 10.1007/978-3-7643-8722-8.  Google Scholar

[3]

L. Ambrosio, G. Savaré and L. Zambotti, Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Related Fields, 145 (2009), 517-564. doi: 10.1007/s00440-008-0177-3.  Google Scholar

[4]

P. Billingsley, Probability and Measure, 2nd edition, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1999.  Google Scholar

[5]

F. Bolley, A. Guillin and C. Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces, Probab. Theory Related Fields, 137 (2007), 541-593. doi: 10.1007/s00440-006-0004-7.  Google Scholar

[6]

A. Budhiraja, P. Dupuis, M. Fischer and K. Ramanan, Limits of relative entropies associated with weakly interacting particle systems, Electron. J. Probab., 20 (2015), 22pp. doi: 10.1214/EJP.v20-4003.  Google Scholar

[7]

A. Budhiraja, P. Dupuis, M. Fischer and K. Ramanan, Local stability of Kolmogorov forward equations for finite state nonlinear Markov processes, Electron. J. Probab., 20 (2015), 30pp. doi: 10.1214/EJP.v20-4004.  Google Scholar

[8]

G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, vol. 207 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.  Google Scholar

[9]

J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018. doi: 10.4171/RMI/376.  Google Scholar

[10]

J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263. doi: 10.1007/s00205-005-0386-1.  Google Scholar

[11]

P. Cattiaux, A. Guillin and F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case, Probab. Theory Related Fields, 140 (2008), 19-40. doi: 10.1007/s00440-007-0056-3.  Google Scholar

[12]

P. Dai Pra and F. den Hollander, McKean-Vlasov limit for interacting random processes in random media, J. Statist. Phys., 84 (1996), 735-772. doi: 10.1007/BF02179656.  Google Scholar

[13]

S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport, in Optimal Transportation, vol. 413 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 2014, 100-144. doi: 10.1017/CBO9781107297296.007.  Google Scholar

[14]

D. A. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, 20 (1987), 247-308. doi: 10.1080/17442508708833446.  Google Scholar

[15]

E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68 (1980), 180-187.  Google Scholar

[16]

N. Dirr, V. Laschos and J. Zimmer, Upscaling from particle models to entropic gradient flows, J. Math. Phys., 53 (2012), 063704, 9 pp. doi: 10.1063/1.4726509.  Google Scholar

[17]

R. Dobrushin, Vlasov equations, Functional Analysis and Its Applications, 13 (1979), 48-58,96. doi: 10.1007/BF01077243.  Google Scholar

[18]

J. Dolbeault, B. Nazaret and G. Savaré, A new class of transport distances between measures, Calc. Var. Partial Differential Equations, 34 (2009), 193-231. doi: 10.1007/s00526-008-0182-5.  Google Scholar

[19]

M. H. Duong, V. Laschos and M. Renger, Wasserstein gradient flows from large deviations of many-particle limits, ESAIM Control Optim. Calc. Var., 19 (2013), 1166-1188. doi: 10.1051/cocv/2013049.  Google Scholar

[20]

P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1997, A Wiley-Interscience Publication. doi: 10.1002/9781118165904.  Google Scholar

[21]

M. Erbar, Gradient flows of the entropy for jump processes, Ann. Inst. H. Poincaré Probab. Statist., 50 (2014), 920-945. doi: 10.1214/12-AIHP537.  Google Scholar

[22]

M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Ration. Mech. Anal., 206 (2012), 997-1038. doi: 10.1007/s00205-012-0554-z.  Google Scholar

[23]

M. Erbar and J. Maas, Gradient flow structures for discrete porous medium equations, Discrete Contin. Dyn. Syst., 34 (2014), 1355-1374. doi: 10.3934/dcds.2014.34.1355.  Google Scholar

[24]

M. Erbar, J. Maas and M. Renger, From large deviations to Wasserstein gradient flows in multiple dimensions, Electron. Commun. Probab., 20 (2015), 1-12. doi: 10.1214/ECP.v20-4315.  Google Scholar

[25]

M. Fathi, A gradient flow approach to large deviations for diffusion processes, J. Math. Pures Appl., (2016). doi: 10.1016/j.matpur.2016.03.018.  Google Scholar

[26]

M. Fathi and M. Simon, The gradient flow approach to hydrodynamic limits for the simple exclusion process, In P. Gonçalves and A. J. Soares, From Particle Systems to Partial Differential Equations III: Particle Systems and PDEs III, Braga, Portugal, December 2014, 167-184, Springer International Publishing, Cham, 2016. Google Scholar

[27]

N. Gigli and J. Maas, Gromov-Hausdorff convergence of discrete transportation metrics, SIAM J. Math. Anal., 45 (2013), 879-899. doi: 10.1137/120886315.  Google Scholar

[28]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359.  Google Scholar

[29]

C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, vol. 320 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-03752-2.  Google Scholar

[30]

D. A. Levin, M. J. Luczak and Y. Peres, Glauber dynamics for the mean-field Ising model: Cut-off, critical power law, and metastability, Probab. Theory Related Fields, 146 (2010), 223-265. doi: 10.1007/s00440-008-0189-z.  Google Scholar

[31]

J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal., 261 (2011), 2250-2292. doi: 10.1016/j.jfa.2011.06.009.  Google Scholar

[32]

F. Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes, Ann. Appl. Probab., 13 (2003), 540-560. doi: 10.1214/aoap/1050689593.  Google Scholar

[33]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), 1087-1091. doi: 10.1063/1.1699114.  Google Scholar

[34]

A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Partial Differential Equations, 48 (2013), 1-31. doi: 10.1007/s00526-012-0538-8.  Google Scholar

[35]

A. Mielke, On evolutionary $\Gamma$-convergence for gradient systems, Springer International Publishing, Cham, 3 (2016), 187-249. doi: 10.1007/978-3-319-26883-5_3.  Google Scholar

[36]

K. Oelschläger, A martingale approach to the law of large numbers for weakly interacting stochastic processes, Ann. Probab., 12 (1984), 458-479. doi: 10.1214/aop/1176993301.  Google Scholar

[37]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. doi: 10.1081/PDE-100002243.  Google Scholar

[38]

E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672. doi: 10.1002/cpa.20046.  Google Scholar

[39]

A. Schlichting, Macroscopic limits of the Becker-Döring equations via gradient flows,, , ().   Google Scholar

[40]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst., 31 (2011), 1427-1451. doi: 10.3934/dcds.2011.31.1427.  Google Scholar

[41]

A.-S. Sznitman, Topics in Propagation of Chaos, in École d'Été de Probabilités de Saint-Flour XIX-1989, vol. 1464 of Lecture Notes in Math., Springer, Berlin, 1991, 165-251. doi: 10.1007/BFb0085169.  Google Scholar

show all references

References:
[1]

S. Adams, N. Dirr, M. A. Peletier and J. Zimmer, From a large-deviations principle to the Wasserstein gradient flow: a new micro-macro passage, Comm. Math. Phys., 307 (2011), 791-815. doi: 10.1007/s00220-011-1328-4.  Google Scholar

[2]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. doi: 10.1007/978-3-7643-8722-8.  Google Scholar

[3]

L. Ambrosio, G. Savaré and L. Zambotti, Existence and stability for Fokker-Planck equations with log-concave reference measure, Probab. Theory Related Fields, 145 (2009), 517-564. doi: 10.1007/s00440-008-0177-3.  Google Scholar

[4]

P. Billingsley, Probability and Measure, 2nd edition, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1999.  Google Scholar

[5]

F. Bolley, A. Guillin and C. Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces, Probab. Theory Related Fields, 137 (2007), 541-593. doi: 10.1007/s00440-006-0004-7.  Google Scholar

[6]

A. Budhiraja, P. Dupuis, M. Fischer and K. Ramanan, Limits of relative entropies associated with weakly interacting particle systems, Electron. J. Probab., 20 (2015), 22pp. doi: 10.1214/EJP.v20-4003.  Google Scholar

[7]

A. Budhiraja, P. Dupuis, M. Fischer and K. Ramanan, Local stability of Kolmogorov forward equations for finite state nonlinear Markov processes, Electron. J. Probab., 20 (2015), 30pp. doi: 10.1214/EJP.v20-4004.  Google Scholar

[8]

G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, vol. 207 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989.  Google Scholar

[9]

J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018. doi: 10.4171/RMI/376.  Google Scholar

[10]

J. A. Carrillo, R. J. McCann and C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263. doi: 10.1007/s00205-005-0386-1.  Google Scholar

[11]

P. Cattiaux, A. Guillin and F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case, Probab. Theory Related Fields, 140 (2008), 19-40. doi: 10.1007/s00440-007-0056-3.  Google Scholar

[12]

P. Dai Pra and F. den Hollander, McKean-Vlasov limit for interacting random processes in random media, J. Statist. Phys., 84 (1996), 735-772. doi: 10.1007/BF02179656.  Google Scholar

[13]

S. Daneri and G. Savaré, Lecture notes on gradient flows and optimal transport, in Optimal Transportation, vol. 413 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge, 2014, 100-144. doi: 10.1017/CBO9781107297296.007.  Google Scholar

[14]

D. A. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, 20 (1987), 247-308. doi: 10.1080/17442508708833446.  Google Scholar

[15]

E. De Giorgi, A. Marino and M. Tosques, Problems of evolution in metric spaces and maximal decreasing curve, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 68 (1980), 180-187.  Google Scholar

[16]

N. Dirr, V. Laschos and J. Zimmer, Upscaling from particle models to entropic gradient flows, J. Math. Phys., 53 (2012), 063704, 9 pp. doi: 10.1063/1.4726509.  Google Scholar

[17]

R. Dobrushin, Vlasov equations, Functional Analysis and Its Applications, 13 (1979), 48-58,96. doi: 10.1007/BF01077243.  Google Scholar

[18]

J. Dolbeault, B. Nazaret and G. Savaré, A new class of transport distances between measures, Calc. Var. Partial Differential Equations, 34 (2009), 193-231. doi: 10.1007/s00526-008-0182-5.  Google Scholar

[19]

M. H. Duong, V. Laschos and M. Renger, Wasserstein gradient flows from large deviations of many-particle limits, ESAIM Control Optim. Calc. Var., 19 (2013), 1166-1188. doi: 10.1051/cocv/2013049.  Google Scholar

[20]

P. Dupuis and R. S. Ellis, A Weak Convergence Approach to the Theory of Large Deviations, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1997, A Wiley-Interscience Publication. doi: 10.1002/9781118165904.  Google Scholar

[21]

M. Erbar, Gradient flows of the entropy for jump processes, Ann. Inst. H. Poincaré Probab. Statist., 50 (2014), 920-945. doi: 10.1214/12-AIHP537.  Google Scholar

[22]

M. Erbar and J. Maas, Ricci curvature of finite Markov chains via convexity of the entropy, Arch. Ration. Mech. Anal., 206 (2012), 997-1038. doi: 10.1007/s00205-012-0554-z.  Google Scholar

[23]

M. Erbar and J. Maas, Gradient flow structures for discrete porous medium equations, Discrete Contin. Dyn. Syst., 34 (2014), 1355-1374. doi: 10.3934/dcds.2014.34.1355.  Google Scholar

[24]

M. Erbar, J. Maas and M. Renger, From large deviations to Wasserstein gradient flows in multiple dimensions, Electron. Commun. Probab., 20 (2015), 1-12. doi: 10.1214/ECP.v20-4315.  Google Scholar

[25]

M. Fathi, A gradient flow approach to large deviations for diffusion processes, J. Math. Pures Appl., (2016). doi: 10.1016/j.matpur.2016.03.018.  Google Scholar

[26]

M. Fathi and M. Simon, The gradient flow approach to hydrodynamic limits for the simple exclusion process, In P. Gonçalves and A. J. Soares, From Particle Systems to Partial Differential Equations III: Particle Systems and PDEs III, Braga, Portugal, December 2014, 167-184, Springer International Publishing, Cham, 2016. Google Scholar

[27]

N. Gigli and J. Maas, Gromov-Hausdorff convergence of discrete transportation metrics, SIAM J. Math. Anal., 45 (2013), 879-899. doi: 10.1137/120886315.  Google Scholar

[28]

R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), 1-17. doi: 10.1137/S0036141096303359.  Google Scholar

[29]

C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, vol. 320 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 1999. doi: 10.1007/978-3-662-03752-2.  Google Scholar

[30]

D. A. Levin, M. J. Luczak and Y. Peres, Glauber dynamics for the mean-field Ising model: Cut-off, critical power law, and metastability, Probab. Theory Related Fields, 146 (2010), 223-265. doi: 10.1007/s00440-008-0189-z.  Google Scholar

[31]

J. Maas, Gradient flows of the entropy for finite Markov chains, J. Funct. Anal., 261 (2011), 2250-2292. doi: 10.1016/j.jfa.2011.06.009.  Google Scholar

[32]

F. Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes, Ann. Appl. Probab., 13 (2003), 540-560. doi: 10.1214/aoap/1050689593.  Google Scholar

[33]

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, Equations of state calculations by fast computing machines, J. Chem. Phys., 21 (1953), 1087-1091. doi: 10.1063/1.1699114.  Google Scholar

[34]

A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains, Calc. Var. Partial Differential Equations, 48 (2013), 1-31. doi: 10.1007/s00526-012-0538-8.  Google Scholar

[35]

A. Mielke, On evolutionary $\Gamma$-convergence for gradient systems, Springer International Publishing, Cham, 3 (2016), 187-249. doi: 10.1007/978-3-319-26883-5_3.  Google Scholar

[36]

K. Oelschläger, A martingale approach to the law of large numbers for weakly interacting stochastic processes, Ann. Probab., 12 (1984), 458-479. doi: 10.1214/aop/1176993301.  Google Scholar

[37]

F. Otto, The geometry of dissipative evolution equations: The porous medium equation, Comm. Partial Differential Equations, 26 (2001), 101-174. doi: 10.1081/PDE-100002243.  Google Scholar

[38]

E. Sandier and S. Serfaty, Gamma-convergence of gradient flows with applications to Ginzburg-Landau, Comm. Pure Appl. Math., 57 (2004), 1627-1672. doi: 10.1002/cpa.20046.  Google Scholar

[39]

A. Schlichting, Macroscopic limits of the Becker-Döring equations via gradient flows,, , ().   Google Scholar

[40]

S. Serfaty, Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst., 31 (2011), 1427-1451. doi: 10.3934/dcds.2011.31.1427.  Google Scholar

[41]

A.-S. Sznitman, Topics in Propagation of Chaos, in École d'Été de Probabilités de Saint-Flour XIX-1989, vol. 1464 of Lecture Notes in Math., Springer, Berlin, 1991, 165-251. doi: 10.1007/BFb0085169.  Google Scholar

[1]

Salah Eddine Choutri, Boualem Djehiche, Hamidou Tembine. Optimal control and zero-sum games for Markov chains of mean-field type. Mathematical Control & Related Fields, 2019, 9 (3) : 571-605. doi: 10.3934/mcrf.2019026

[2]

Michael Herty, Mattia Zanella. Performance bounds for the mean-field limit of constrained dynamics. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2023-2043. doi: 10.3934/dcds.2017086

[3]

Young-Pil Choi, Samir Salem. Cucker-Smale flocking particles with multiplicative noises: Stochastic mean-field limit and phase transition. Kinetic & Related Models, 2019, 12 (3) : 573-592. doi: 10.3934/krm.2019023

[4]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, 2021, 14 (3) : 429-468. doi: 10.3934/krm.2021011

[5]

Sylvia Serfaty. Gamma-convergence of gradient flows on Hilbert and metric spaces and applications. Discrete & Continuous Dynamical Systems, 2011, 31 (4) : 1427-1451. doi: 10.3934/dcds.2011.31.1427

[6]

Xing Huang, Feng-Yu Wang. Mckean-Vlasov sdes with drifts discontinuous under wasserstein distance. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1667-1679. doi: 10.3934/dcds.2020336

[7]

Rong Yang, Li Chen. Mean-field limit for a collision-avoiding flocking system and the time-asymptotic flocking dynamics for the kinetic equation. Kinetic & Related Models, 2014, 7 (2) : 381-400. doi: 10.3934/krm.2014.7.381

[8]

Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in mean-field limit. Kinetic & Related Models, 2011, 4 (1) : 385-399. doi: 10.3934/krm.2011.4.385

[9]

Seung-Yeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and mean-field limit for the augmented Kuramoto model. Networks & Heterogeneous Media, 2018, 13 (2) : 297-322. doi: 10.3934/nhm.2018013

[10]

Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3741-3753. doi: 10.3934/dcdsb.2018313

[11]

Stamatios Katsikas, Vassilli Kolokoltsov. Evolutionary, mean-field and pressure-resistance game modelling of networks security. Journal of Dynamics & Games, 2019, 6 (4) : 315-335. doi: 10.3934/jdg.2019021

[12]

Huyên Pham. Linear quadratic optimal control of conditional McKean-Vlasov equation with random coefficients and applications. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 7-. doi: 10.1186/s41546-016-0008-x

[13]

Alexander Mielke. Deriving amplitude equations via evolutionary $\Gamma$-convergence. Discrete & Continuous Dynamical Systems, 2015, 35 (6) : 2679-2700. doi: 10.3934/dcds.2015.35.2679

[14]

Seung-Yeal Ha, Jeongho Kim, Peter Pickl, Xiongtao Zhang. A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication. Kinetic & Related Models, 2019, 12 (5) : 1045-1067. doi: 10.3934/krm.2019039

[15]

Seung-Yeal Ha, Jeongho Kim, Xiongtao Zhang. Uniform stability of the Cucker-Smale model and its application to the Mean-Field limit. Kinetic & Related Models, 2018, 11 (5) : 1157-1181. doi: 10.3934/krm.2018045

[16]

Joachim Crevat. Mean-field limit of a spatially-extended FitzHugh-Nagumo neural network. Kinetic & Related Models, 2019, 12 (6) : 1329-1358. doi: 10.3934/krm.2019052

[17]

Hyunjin Ahn, Seung-Yeal Ha, Jeongho Kim. Uniform stability of the relativistic Cucker-Smale model and its application to a mean-field limit. Communications on Pure & Applied Analysis, 2021, 20 (12) : 4209-4237. doi: 10.3934/cpaa.2021156

[18]

Martin Burger, Marco Di Francesco, Peter A. Markowich, Marie-Therese Wolfram. Mean field games with nonlinear mobilities in pedestrian dynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1311-1333. doi: 10.3934/dcdsb.2014.19.1311

[19]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[20]

Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks & Heterogeneous Media, 2015, 10 (2) : 233-253. doi: 10.3934/nhm.2015.10.233

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (9)

[Back to Top]