• Previous Article
    Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation
  • DCDS Home
  • This Issue
  • Next Article
    Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator
December  2016, 36(12): 6899-6919. doi: 10.3934/dcds.2016100

Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions

1. 

Department of Mathematics, Pusan National University, Busan, 609-735

Received  February 2016 Revised  July 2016 Published  October 2016

In this paper, we consider the viscoelastic equation with damping and source terms and acoustic boundary conditions. We prove a global existence of solutions and uniform decay rates of the energy without imposing any restrictive growth assumption on the damping term and weakening of the usual assumptions on the relaxation function. This paper is to improve the result of [4] by applying the method developed in [17].
Citation: Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100
References:
[1]

J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J., 25 (1976), 895-917. doi: 10.1512/iumj.1976.25.25071.

[2]

J. T. Beale, Acoustic scattering from locally reacting surfaces, Indiana Univ. Math. J., 26 (1977), 199-222. doi: 10.1512/iumj.1977.26.26015.

[3]

J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc., 80 (1974), 1276-1278. doi: 10.1090/S0002-9904-1974-13714-6.

[4]

Y. Boukhatem and B. Benabderrahmane, Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions, Nonlinear Anal., 97 (2014), 191-209. doi: 10.1016/j.na.2013.11.019.

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Differential. Equations, 236 (2007), 407-459. doi: 10.1016/j.jde.2007.02.004.

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal., 68 (2008), 177-193. doi: 10.1016/j.na.2006.10.040.

[7]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global solvability and asymptotic stability for the wave equation with nonlinear feedback and source term on the boundary, Adv. Math. Sci. Appl., 16 (2006), 661-696.

[8]

A. T. Cousin, C. L. Frota and N. A. Larkin, Global solvability and asymptotic behaviour of a hyperbolic problem with acoustic boundary conditions, Funkcial. Ekvac., 44 (2001), 471-485.

[9]

A. T. Cousin, C. L. Frota and N. A. Larkin, On a system of Klein-Gordon type equations with acoustic boundary conditions, J. Math. Anal. Appl., 293 (2004), 293-309. doi: 10.1016/j.jmaa.2004.01.007.

[10]

C. L. Frota and J. A. Goldstein, Some Nonlinear wave equations with acoustic boundary conditins, J. Differential equations, 164 (2000), 92-109. doi: 10.1006/jdeq.1999.3743.

[11]

C. L. Frota and N. A. Larkin, Uniform stabilization for a hyperbolic equation with acoustic boundary conditions in simple connected domains, Progr. Nonlinear Differential Equations Appl., 66 (2006), 297-312. doi: 10.1007/3-7643-7401-2_20.

[12]

P. Jameson Graber and B. Said-Houari, On the wave equation with semilinear porous acoustic boundary conditions, J. Differential Equations, 252 (2012), 4898-4941. doi: 10.1016/j.jde.2012.01.042.

[13]

P. Jameson Graber, Strong stability and uniform decay of solutions to a wave equation with semilinear porous acoustic boundary conditions, Nonlinear Anal., 74 (2011), 3137-3148. doi: 10.1016/j.na.2011.01.029.

[14]

P. Jameson Graber, Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping, J. Evolution Equations, 12 (2012), 141-164. doi: 10.1007/s00028-011-0127-x.

[15]

P. Jameson Graber, Wave equation with porous nonlinear acoustic boundary conditions generates a well-posed dynamical system, Nonlinear Anal., 73 (2010), 3058-3068. doi: 10.1016/j.na.2010.06.075.

[16]

T. G. Ha, General decay estimates for the wave equation with acoustic boundary conditions in domains with nonlocally reacting boundary, Appl. Math. Lett., 60 (2016), 43-49. doi: 10.1016/j.aml.2016.04.006.

[17]

T. G. Ha, On viscoelastic wave equation with nonlinear boundary damping and source term, Commun. Pur. Appl. Anal., 9 (2010), 1543-1576. doi: 10.3934/cpaa.2010.9.1543.

[18]

T. G. Ha and J. Y. Park, Existence of solutions for the Kirchhoff-type wave equation with memory term and acoustic boundary conditions, Numer. Funct. Anal. Optim., 31 (2010), 921-935. doi: 10.1080/01630563.2010.498301.

[19]

T. G. Ha and J. Y. Park, On coupled Klein-Gordon-Schrödinger equations with acoustic boundary conditions, Bound. Value Probl., 2010 (2010), Art. ID 132751, 23pp.

[20]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, John Wiley, Paris, 1994.

[21]

V. Komornik and E. Zuazua, A direct method for boundary stabilization of the wave equation, J. Math. Pures Appl., 69 (1990), 33-54.

[22]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differ. Integral Equ., 6 (1993), 507-533.

[23]

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25 (1992), 189-224. doi: 10.1007/BF01182480.

[24]

J. Li and S. G. Chai, Energy decay for a nonlinear wave equation of variable coefficients with acoustic boundary conditions and a time-varying delay in the boundary feedback, Nonlinear Anal., 112 (2015), 105-117. doi: 10.1016/j.na.2014.08.021.

[25]

W. Liu, Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions, Appl. Math. Lett., 38 (2014), 155-161. doi: 10.1016/j.aml.2014.07.022.

[26]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM: Control, Optimisation Calc. Var., 4 (1999), 419-444. doi: 10.1051/cocv:1999116.

[27]

J. Y. Park and T. G. Ha, Energy decay for nondissipative distributed systems with boundary damping and source term, Nonlinear Anal., 70 (2009), 2416-2434. doi: 10.1016/j.na.2008.03.026.

[28]

J. Y. Park and T. G. Ha, Existence and asymptotic stability for the semilinear wave equation with boundary damping and source term, J. Math. Phys., 49 (2008), 053511, 26pp. doi: 10.1063/1.2919886.

[29]

J. Y. Park and T. G. Ha, Well-posedness and uniform decay rates for the Klein-Gordon equation with damping term and acoustic boundary conditions, J. Math. Phys., 50 (2009), 013506, 18pp. doi: 10.1063/1.3040185.

[30]

J. Y. Park, T. G. Ha and Y. H. Kang, Energy decay rates for solutions of the wave equation with boundary damping and source term, Z. Angew. Math. Phys., 61 (2010), 235-265. doi: 10.1007/s00033-009-0009-z.

[31]

E. Vitillaro, Global existence for the wave equation with nonlinear boundary damping and source terms, J. Differential Equations, 186 (2002), 259-298. doi: 10.1016/S0022-0396(02)00023-2.

[32]

J. Wu, Uniform energy decay of a variable coefficient wave equation with nonlinear acoustic boundary conditions, J. Math. Anal. Appl., 399 (2013), 369-377. doi: 10.1016/j.jmaa.2012.09.056.

[33]

J. Wu, Well-posedness for a variable-coefficient wave equation with nonlinear damped acoustic boundary conditions, Nonlinear Anal., 75 (2012), 6562-6569. doi: 10.1016/j.na.2012.07.032.

[34]

E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim., 28 (1990), 466-478. doi: 10.1137/0328025.

show all references

References:
[1]

J. T. Beale, Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J., 25 (1976), 895-917. doi: 10.1512/iumj.1976.25.25071.

[2]

J. T. Beale, Acoustic scattering from locally reacting surfaces, Indiana Univ. Math. J., 26 (1977), 199-222. doi: 10.1512/iumj.1977.26.26015.

[3]

J. T. Beale and S. I. Rosencrans, Acoustic boundary conditions, Bull. Amer. Math. Soc., 80 (1974), 1276-1278. doi: 10.1090/S0002-9904-1974-13714-6.

[4]

Y. Boukhatem and B. Benabderrahmane, Existence and decay of solutions for a viscoelastic wave equation with acoustic boundary conditions, Nonlinear Anal., 97 (2014), 191-209. doi: 10.1016/j.na.2013.11.019.

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Differential. Equations, 236 (2007), 407-459. doi: 10.1016/j.jde.2007.02.004.

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and P. Martinez, General decay rate estimates for viscoelastic dissipative systems, Nonlinear Anal., 68 (2008), 177-193. doi: 10.1016/j.na.2006.10.040.

[7]

M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global solvability and asymptotic stability for the wave equation with nonlinear feedback and source term on the boundary, Adv. Math. Sci. Appl., 16 (2006), 661-696.

[8]

A. T. Cousin, C. L. Frota and N. A. Larkin, Global solvability and asymptotic behaviour of a hyperbolic problem with acoustic boundary conditions, Funkcial. Ekvac., 44 (2001), 471-485.

[9]

A. T. Cousin, C. L. Frota and N. A. Larkin, On a system of Klein-Gordon type equations with acoustic boundary conditions, J. Math. Anal. Appl., 293 (2004), 293-309. doi: 10.1016/j.jmaa.2004.01.007.

[10]

C. L. Frota and J. A. Goldstein, Some Nonlinear wave equations with acoustic boundary conditins, J. Differential equations, 164 (2000), 92-109. doi: 10.1006/jdeq.1999.3743.

[11]

C. L. Frota and N. A. Larkin, Uniform stabilization for a hyperbolic equation with acoustic boundary conditions in simple connected domains, Progr. Nonlinear Differential Equations Appl., 66 (2006), 297-312. doi: 10.1007/3-7643-7401-2_20.

[12]

P. Jameson Graber and B. Said-Houari, On the wave equation with semilinear porous acoustic boundary conditions, J. Differential Equations, 252 (2012), 4898-4941. doi: 10.1016/j.jde.2012.01.042.

[13]

P. Jameson Graber, Strong stability and uniform decay of solutions to a wave equation with semilinear porous acoustic boundary conditions, Nonlinear Anal., 74 (2011), 3137-3148. doi: 10.1016/j.na.2011.01.029.

[14]

P. Jameson Graber, Uniform boundary stabilization of a wave equation with nonlinear acoustic boundary conditions and nonlinear boundary damping, J. Evolution Equations, 12 (2012), 141-164. doi: 10.1007/s00028-011-0127-x.

[15]

P. Jameson Graber, Wave equation with porous nonlinear acoustic boundary conditions generates a well-posed dynamical system, Nonlinear Anal., 73 (2010), 3058-3068. doi: 10.1016/j.na.2010.06.075.

[16]

T. G. Ha, General decay estimates for the wave equation with acoustic boundary conditions in domains with nonlocally reacting boundary, Appl. Math. Lett., 60 (2016), 43-49. doi: 10.1016/j.aml.2016.04.006.

[17]

T. G. Ha, On viscoelastic wave equation with nonlinear boundary damping and source term, Commun. Pur. Appl. Anal., 9 (2010), 1543-1576. doi: 10.3934/cpaa.2010.9.1543.

[18]

T. G. Ha and J. Y. Park, Existence of solutions for the Kirchhoff-type wave equation with memory term and acoustic boundary conditions, Numer. Funct. Anal. Optim., 31 (2010), 921-935. doi: 10.1080/01630563.2010.498301.

[19]

T. G. Ha and J. Y. Park, On coupled Klein-Gordon-Schrödinger equations with acoustic boundary conditions, Bound. Value Probl., 2010 (2010), Art. ID 132751, 23pp.

[20]

V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, John Wiley, Paris, 1994.

[21]

V. Komornik and E. Zuazua, A direct method for boundary stabilization of the wave equation, J. Math. Pures Appl., 69 (1990), 33-54.

[22]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differ. Integral Equ., 6 (1993), 507-533.

[23]

I. Lasiecka and R. Triggiani, Uniform stabilization of the wave equation with Dirichlet or Neumann feedback control without geometrical conditions, Appl. Math. Optim., 25 (1992), 189-224. doi: 10.1007/BF01182480.

[24]

J. Li and S. G. Chai, Energy decay for a nonlinear wave equation of variable coefficients with acoustic boundary conditions and a time-varying delay in the boundary feedback, Nonlinear Anal., 112 (2015), 105-117. doi: 10.1016/j.na.2014.08.021.

[25]

W. Liu, Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions, Appl. Math. Lett., 38 (2014), 155-161. doi: 10.1016/j.aml.2014.07.022.

[26]

P. Martinez, A new method to obtain decay rate estimates for dissipative systems, ESAIM: Control, Optimisation Calc. Var., 4 (1999), 419-444. doi: 10.1051/cocv:1999116.

[27]

J. Y. Park and T. G. Ha, Energy decay for nondissipative distributed systems with boundary damping and source term, Nonlinear Anal., 70 (2009), 2416-2434. doi: 10.1016/j.na.2008.03.026.

[28]

J. Y. Park and T. G. Ha, Existence and asymptotic stability for the semilinear wave equation with boundary damping and source term, J. Math. Phys., 49 (2008), 053511, 26pp. doi: 10.1063/1.2919886.

[29]

J. Y. Park and T. G. Ha, Well-posedness and uniform decay rates for the Klein-Gordon equation with damping term and acoustic boundary conditions, J. Math. Phys., 50 (2009), 013506, 18pp. doi: 10.1063/1.3040185.

[30]

J. Y. Park, T. G. Ha and Y. H. Kang, Energy decay rates for solutions of the wave equation with boundary damping and source term, Z. Angew. Math. Phys., 61 (2010), 235-265. doi: 10.1007/s00033-009-0009-z.

[31]

E. Vitillaro, Global existence for the wave equation with nonlinear boundary damping and source terms, J. Differential Equations, 186 (2002), 259-298. doi: 10.1016/S0022-0396(02)00023-2.

[32]

J. Wu, Uniform energy decay of a variable coefficient wave equation with nonlinear acoustic boundary conditions, J. Math. Anal. Appl., 399 (2013), 369-377. doi: 10.1016/j.jmaa.2012.09.056.

[33]

J. Wu, Well-posedness for a variable-coefficient wave equation with nonlinear damped acoustic boundary conditions, Nonlinear Anal., 75 (2012), 6562-6569. doi: 10.1016/j.na.2012.07.032.

[34]

E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control Optim., 28 (1990), 466-478. doi: 10.1137/0328025.

[1]

Tae Gab Ha. On the viscoelastic equation with Balakrishnan-Taylor damping and acoustic boundary conditions. Evolution Equations and Control Theory, 2018, 7 (2) : 281-291. doi: 10.3934/eect.2018014

[2]

Ammar Khemmoudj, Taklit Hamadouche. General decay of solutions of a Bresse system with viscoelastic boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4857-4876. doi: 10.3934/dcds.2017209

[3]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[4]

Mohammad M. Al-Gharabli, Aissa Guesmia, Salim A. Messaoudi. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 159-180. doi: 10.3934/cpaa.2019009

[5]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations and Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[6]

Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022106

[7]

Petronela Radu, Grozdena Todorova, Borislav Yordanov. Higher order energy decay rates for damped wave equations with variable coefficients. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 609-629. doi: 10.3934/dcdss.2009.2.609

[8]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[9]

Mohammad Al-Gharabli, Mohamed Balegh, Baowei Feng, Zayd Hajjej, Salim A. Messaoudi. Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term. Evolution Equations and Control Theory, 2022, 11 (4) : 1149-1173. doi: 10.3934/eect.2021038

[10]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[11]

Marcelo Moreira Cavalcanti. Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 675-695. doi: 10.3934/dcds.2002.8.675

[12]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations and Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[13]

Baowei Feng, Abdelaziz Soufyane. New general decay results for a von Karman plate equation with memory-type boundary conditions. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1757-1774. doi: 10.3934/dcds.2020092

[14]

Qigui Yang, Qiaomin Xiang. Chaotic oscillations of linear hyperbolic PDE with variable coefficients and implicit boundary conditions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3267-3284. doi: 10.3934/dcdss.2020335

[15]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure and Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

[16]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1857-1871. doi: 10.3934/cpaa.2021043

[17]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[18]

Belkacem Said-Houari, Salim A. Messaoudi. General decay estimates for a Cauchy viscoelastic wave problem. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1541-1551. doi: 10.3934/cpaa.2014.13.1541

[19]

Abderrahmane Youkana, Salim A. Messaoudi. General and optimal decay for a quasilinear parabolic viscoelastic system. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1307-1316. doi: 10.3934/dcdss.2021129

[20]

Anton Arnold, Sjoerd Geevers, Ilaria Perugia, Dmitry Ponomarev. On the exponential time-decay for the one-dimensional wave equation with variable coefficients. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022105

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]