\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Geometric Lorenz flows with historic behavior

Abstract Related Papers Cited by
  • We will show that, in the the geometric Lorenz flow, the set of initial states which give rise to orbits with historic behavior is residual in a trapping region.
    Mathematics Subject Classification: Primary: 37A05, 37C10, 37C40, 37D30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Araujo, M. J. Pacifico, E. R. Pujals and M. Viana, Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc., 361 (2009), 2431-2485.doi: 10.1090/S0002-9947-08-04595-9.

    [2]

    Ch. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Encyclopedia of Mathematical Sciences (Mathematical Physics), 102, Mathematical physics, III. Springer Verlag, 2005.

    [3]

    T. N. Dowker, The mean and transitive points of homeomorphisms, Ann. of Math., 58 (1953), 123-133.doi: 10.2307/1969823.

    [4]

    J. Guckenheimer, A strange, strange attractor, in The Hopf bifurcation and its applications, ( eds. J. E. Marsden and M. McCracke), Springer-Verlag, New York, (1976), 368-381.

    [5]

    J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59-72.

    [6]

    F. Hofbauer, Kneading invariants and Markov diagrams, in Ergodic theory and related topics (Vitte, 1981), Math. Res., Akademie-Verlag, Berlin, 12 (1982), 85-95.

    [7]

    T. Jordan, V. Naudot and T. Young, Higher order Birkhoff averages, Dyn. Syst., 24 (2009), 299-313.doi: 10.1080/14689360802676269.

    [8]

    S. Kiriki and T. Soma, Takens' last problem and existence of non-trivial wandering domains, preprint, arXiv:1503.06258.

    [9]

    I. S. Labouriau and A. A. P. Rodrigues, On Takens' Last Problem: Tangencies and time averages near heteroclinic networks, preprint, arXiv:1606.07017.

    [10]

    E. N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci., 20 (1963), 130-141.

    [11]

    C. A. Morales, M. J. Pacifico and E. R. Pujals, Singular hyperbolic systems, Proc. Amer. Math. Soc., 127 (1999), 3393-3401.doi: 10.1090/S0002-9939-99-04936-9.

    [12]

    Y. Nakano, Historic behaviour for quenched random expanding maps on the circle, preprint, arXiv:1510.00905.

    [13]

    J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Fractal dimensions and infinitely many attractors, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993.

    [14]

    C. Robinson, Differentiability of the stable foliation for the model Lorenz equations, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), pp. 302-315, Lecture Notes in Math., 898, Springer, Berlin-New York, 1981.

    [15]

    D. Ruelle, Historical behaviour in smooth dynamical systems, in Global Analysis of Dynamical Systems (eds. H. W. Broer et al), Inst. Phys., Bristol, 2001, 63-66.

    [16]

    F. Takens, Heteroclinic attractors: Time averages and moduli of topological stability, Bol. Soc. Bras. Mat., 25 (1994), 107-120.doi: 10.1007/BF01232938.

    [17]

    F. Takens, Orbits with historic behaviour, or non-existence of averages, Nonlinearity, 21 (2008), T33-T36.doi: 10.1088/0951-7715/21/3/T02.

    [18]

    W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117.doi: 10.1007/s002080010018.

    [19]

    R. Williams, The structure of Lorenz attractors, Turbulence Seminar (Univ. Calif., Berkeley, Calif., 1976/1977), Lecture Notes in Math., Springer, 615 (1977), 94-112.

    [20]

    R. Williams, The structure of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 73-99.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(146) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return