Advanced Search
Article Contents
Article Contents

Geometric Lorenz flows with historic behavior

Abstract Related Papers Cited by
  • We will show that, in the the geometric Lorenz flow, the set of initial states which give rise to orbits with historic behavior is residual in a trapping region.
    Mathematics Subject Classification: Primary: 37A05, 37C10, 37C40, 37D30.


    \begin{equation} \\ \end{equation}
  • [1]

    V. Araujo, M. J. Pacifico, E. R. Pujals and M. Viana, Singular-hyperbolic attractors are chaotic, Trans. Amer. Math. Soc., 361 (2009), 2431-2485.doi: 10.1090/S0002-9947-08-04595-9.


    Ch. Bonatti, L. J. Díaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Encyclopedia of Mathematical Sciences (Mathematical Physics), 102, Mathematical physics, III. Springer Verlag, 2005.


    T. N. Dowker, The mean and transitive points of homeomorphisms, Ann. of Math., 58 (1953), 123-133.doi: 10.2307/1969823.


    J. Guckenheimer, A strange, strange attractor, in The Hopf bifurcation and its applications, ( eds. J. E. Marsden and M. McCracke), Springer-Verlag, New York, (1976), 368-381.


    J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 59-72.


    F. Hofbauer, Kneading invariants and Markov diagrams, in Ergodic theory and related topics (Vitte, 1981), Math. Res., Akademie-Verlag, Berlin, 12 (1982), 85-95.


    T. Jordan, V. Naudot and T. Young, Higher order Birkhoff averages, Dyn. Syst., 24 (2009), 299-313.doi: 10.1080/14689360802676269.


    S. Kiriki and T. Soma, Takens' last problem and existence of non-trivial wandering domains, preprint, arXiv:1503.06258.


    I. S. Labouriau and A. A. P. Rodrigues, On Takens' Last Problem: Tangencies and time averages near heteroclinic networks, preprint, arXiv:1606.07017.


    E. N. Lorenz, Deterministic non-periodic flow, J. Atmos. Sci., 20 (1963), 130-141.


    C. A. Morales, M. J. Pacifico and E. R. Pujals, Singular hyperbolic systems, Proc. Amer. Math. Soc., 127 (1999), 3393-3401.doi: 10.1090/S0002-9939-99-04936-9.


    Y. Nakano, Historic behaviour for quenched random expanding maps on the circle, preprint, arXiv:1510.00905.


    J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Fractal dimensions and infinitely many attractors, Cambridge Studies in Advanced Mathematics, 35, Cambridge University Press, Cambridge, 1993.


    C. Robinson, Differentiability of the stable foliation for the model Lorenz equations, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), pp. 302-315, Lecture Notes in Math., 898, Springer, Berlin-New York, 1981.


    D. Ruelle, Historical behaviour in smooth dynamical systems, in Global Analysis of Dynamical Systems (eds. H. W. Broer et al), Inst. Phys., Bristol, 2001, 63-66.


    F. Takens, Heteroclinic attractors: Time averages and moduli of topological stability, Bol. Soc. Bras. Mat., 25 (1994), 107-120.doi: 10.1007/BF01232938.


    F. Takens, Orbits with historic behaviour, or non-existence of averages, Nonlinearity, 21 (2008), T33-T36.doi: 10.1088/0951-7715/21/3/T02.


    W. Tucker, A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., 2 (2002), 53-117.doi: 10.1007/s002080010018.


    R. Williams, The structure of Lorenz attractors, Turbulence Seminar (Univ. Calif., Berkeley, Calif., 1976/1977), Lecture Notes in Math., Springer, 615 (1977), 94-112.


    R. Williams, The structure of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 73-99.

  • 加载中

Article Metrics

HTML views() PDF downloads(146) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint