\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On hyperbolicity in the renormalization of near-critical area-preserving maps

Abstract Related Papers Cited by
  • We consider MacKay's renormalization operator for pairs of area-preserving maps, near the fixed point obtained in [1]. Of particular interest is the restriction $\mathfrak{R}_{0}$ of this operator to pairs that commute and have a zero Calabi invariant. We prove that a suitable extension of $\mathfrak{R}_{0}^{3}$ is hyperbolic at the fixed point, with a single expanding direction. The pairs in this direction are presumably commuting, but we currently have no proof for this. Our analysis yields rigorous bounds on various ``universal'' quantities, including the expanding eigenvalue.
    Mathematics Subject Classification: Primary: 37E20; Secondary: 37F25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Arioli and H. Koch, The critical renormalization fixed point for commuting pairs of area-preserving maps, Comm. Math. Phys., 295 (2010), 415-429.doi: 10.1007/s00220-009-0922-1.

    [2]

    R. de la Llave and A. Olvera, The obstruction criterion for non-existence of invariant circles and renormalization, Nonlinearity, 19 (2006), 1907-1937.doi: 10.1088/0951-7715/19/8/008.

    [3]

    J.-P. Eckmann, H. Koch and P. Wittwer, A computer-assisted proof of universality for area-preserving maps, Mem. Amer. Math. Soc., 47 (1984), 1-121.doi: 10.1090/memo/0289.

    [4]

    C. Falcolini and R. de la Llave, A rigorous partial justification of Greene's criterion, J. Stat. Phys., 67 (1992), 609-643.doi: 10.1007/BF01049722.

    [5]

    D. Gaidashev, T. Johnson and M. Martens, Rigidity for infinitely renormalizable area-preserving maps, Preprint, arXiv:1205.0826 (2012).doi: 10.1215/00127094-3165327.

    [6]

    J. M. Greene, A method for determining a stochastic transition, J. Math. Phys., 20 (1979), 1183-1201.doi: 10.1063/1.524170.

    [7]

    E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, AMS Colloquium Publications, 31, 1974.

    [8]

    H. Hofer and E. Zehnder, Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Verlag, Basel, 1994.doi: 10.1007/978-3-0348-8540-9.

    [9]

    H. Koch, A renormalization group fixed point associated with the breakup of golden invariant tori, Discrete Contin. Dynam. Systems, 11 (2004), 881-909.doi: 10.3934/dcds.2004.11.881.

    [10]

    H. Koch, Existence of Critical Invariant Tori, Erg. Theor. Dyn. Syst., 28 (2008), 1879-1894.doi: 10.1017/S0143385708000199.

    [11]

    R. S. MacKay, Renormalisation in Area Preserving Maps, Thesis, Princeton, 1982. World Scientific, London, 1993.doi: 10.1142/9789814354462.

    [12]

    R. S. MacKay, Greene's residue criterion, Nonlinearity, 5 (1992), 161-187.doi: 10.1088/0951-7715/5/1/007.

    [13]

    A. Olvera and C. Simó, An obstruction method for the destruction of invariant curves, Physica D, 26 (1987), 181-192.doi: 10.1016/0167-2789(87)90222-3.

    [14]

    S. Ostlund, D. Rand, J. Sethna and E. Siggia, Universal transition from quasiperiodicity to chaos in dissipative systems, Phys. Rev. Lett., 49 (1982), 132-135.doi: 10.1103/PhysRevLett.49.132.

    [15]

    S. J. Shenker and L. P. Kadanoff, Critical behaviour of KAM surfaces. I Empirical results, J. Stat. Phys., 27 (1982), 631-656.doi: 10.1007/BF01013439.

    [16]

    A. Stirnemann, Renormalization for Golden Circles, Comm. Math. Phys., 152 (1993), 369-431.doi: 10.1007/BF02098303.

    [17]

    A. Stirnemann, Towards an existence proof of mackay's fixed point, Comm. Math. Phys., 188 (1997), 723-735.doi: 10.1007/s002200050185.

    [18]

    M. Yampolsky, Hyperbolicity of renormalization of critical circle maps, Publ. Math. Inst. Hautes Etudes Sci., 96 (2002), 1-41.doi: 10.1007/s10240-003-0007-1.

    [19]

    Ada Reference Manual, ISO/IEC 8652:2012(E) available e.g. at http://www.ada-auth.org/arm.html.

    [20]

    The Institute of Electrical and Electronics Engineers, Inc.IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-2008.

    [21]

    A free-software compiler for the Ada programming language, which is part of the GNU Compiler Collection, see http://gcc.gnu.org/.

    [22]

    The MPFR library for multiple-precision floating-point computations with correct rounding, see http://www.mpfr.org/.

    [23]

    The computer programs are available, at ftp://ftp.ma.utexas.edu/pub/papers/koch/maps-spec/index.html.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(124) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return