December  2016, 36(12): 7057-7061. doi: 10.3934/dcds.2016107

On the symmetry of spatially periodic two-dimensional water waves

1. 

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, Vienna, A-1090, Austria

Received  December 2015 Revised  January 2016 Published  October 2016

We show that a spatially periodic solution to the irrotational two-dimensional gravity water wave problem, with the property that the horizontal velocity component at the flat bed is symmetric, while the acceleration at the flat bed is anti-symmetric with respect to a common axis of symmetry, necessarily constitutes a traveling wave. The proof makes use complex variables and structural properties of the governing equations for nonlinear water waves.
Citation: Florian Kogelbauer. On the symmetry of spatially periodic two-dimensional water waves. Discrete & Continuous Dynamical Systems, 2016, 36 (12) : 7057-7061. doi: 10.3934/dcds.2016107
References:
[1]

D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom Pressure measurements, J. Fluid Mech., 726 (2013), 547-558. doi: 10.1017/jfm.2013.253.  Google Scholar

[2]

D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-475. doi: 10.1017/jfm.2012.490.  Google Scholar

[3]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5.  Google Scholar

[4]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 2011. doi: 10.1137/1.9781611971873.  Google Scholar

[5]

A. Constantin, Estimating wave heights from pressure data at the bed, J. Fluid Mech., 743 (2014), 10pp. doi: 10.1017/jfm.2014.81.  Google Scholar

[6]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603. doi: 10.1215/S0012-7094-07-14034-1.  Google Scholar

[7]

A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181. doi: 10.1017/S0022112003006773.  Google Scholar

[8]

M. Ehrnström, H. Holden and X. Raynaud, Symmetric Waves Are Traveling Waves, International Mathematics Research Notices, 2009 (2009), 4578-4596. doi: 10.1093/imrn/rnp100.  Google Scholar

[9]

R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge Texts in Applied Mathematics, Cambridge, 1997. doi: 10.1017/CBO9780511624056.  Google Scholar

[10]

F. Kogelbauer, Recovery of the wave profile for irrotational periodic water waves from pressure measurements, Nonl. Anal.: Real World Appl., 22 (2015), 219-224. doi: 10.1016/j.nonrwa.2014.09.003.  Google Scholar

[11]

F. Kogelbauer, Symmetric irrotational water waves are traveling waves, J. Diff. Eq., 259 (2015), 5271-5275. doi: 10.1016/j.jde.2015.06.025.  Google Scholar

[12]

S. Lang, Complex Analysis, Graduate Texts in Mathematics, Springer, 2003. Google Scholar

[13]

B.-V. Matioc, A characterization of the symmetric steady water waves in terms of the underlying flow, Discrete Contin. Dyn. Syst., A 34 (2014), 3125-3133. doi: 10.3934/dcds.2014.34.3125.  Google Scholar

[14]

H. Okamoto and M. Shoji, The Mathematical Theory of Permanent Progressive Water-waves, World Scientific, 2001. doi: 10.1142/4547.  Google Scholar

[15]

G. Tulzer, On the symmetry of steady periodic water waves with stagnation points, Comm. Pure Appl. Anal., 11 (2012), 1577-1586. doi: 10.3934/cpaa.2012.11.1577.  Google Scholar

show all references

References:
[1]

D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom Pressure measurements, J. Fluid Mech., 726 (2013), 547-558. doi: 10.1017/jfm.2013.253.  Google Scholar

[2]

D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-475. doi: 10.1017/jfm.2012.490.  Google Scholar

[3]

A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. doi: 10.1007/s00222-006-0002-5.  Google Scholar

[4]

A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, 2011. doi: 10.1137/1.9781611971873.  Google Scholar

[5]

A. Constantin, Estimating wave heights from pressure data at the bed, J. Fluid Mech., 743 (2014), 10pp. doi: 10.1017/jfm.2014.81.  Google Scholar

[6]

A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603. doi: 10.1215/S0012-7094-07-14034-1.  Google Scholar

[7]

A. Constantin and J. Escher, Symmetry of steady periodic surface water waves with vorticity, J. Fluid Mech., 498 (2004), 171-181. doi: 10.1017/S0022112003006773.  Google Scholar

[8]

M. Ehrnström, H. Holden and X. Raynaud, Symmetric Waves Are Traveling Waves, International Mathematics Research Notices, 2009 (2009), 4578-4596. doi: 10.1093/imrn/rnp100.  Google Scholar

[9]

R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge Texts in Applied Mathematics, Cambridge, 1997. doi: 10.1017/CBO9780511624056.  Google Scholar

[10]

F. Kogelbauer, Recovery of the wave profile for irrotational periodic water waves from pressure measurements, Nonl. Anal.: Real World Appl., 22 (2015), 219-224. doi: 10.1016/j.nonrwa.2014.09.003.  Google Scholar

[11]

F. Kogelbauer, Symmetric irrotational water waves are traveling waves, J. Diff. Eq., 259 (2015), 5271-5275. doi: 10.1016/j.jde.2015.06.025.  Google Scholar

[12]

S. Lang, Complex Analysis, Graduate Texts in Mathematics, Springer, 2003. Google Scholar

[13]

B.-V. Matioc, A characterization of the symmetric steady water waves in terms of the underlying flow, Discrete Contin. Dyn. Syst., A 34 (2014), 3125-3133. doi: 10.3934/dcds.2014.34.3125.  Google Scholar

[14]

H. Okamoto and M. Shoji, The Mathematical Theory of Permanent Progressive Water-waves, World Scientific, 2001. doi: 10.1142/4547.  Google Scholar

[15]

G. Tulzer, On the symmetry of steady periodic water waves with stagnation points, Comm. Pure Appl. Anal., 11 (2012), 1577-1586. doi: 10.3934/cpaa.2012.11.1577.  Google Scholar

[1]

Adrian Constantin. Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1397-1406. doi: 10.3934/cpaa.2012.11.1397

[2]

Anna Geyer, Ronald Quirchmayr. Traveling wave solutions of a highly nonlinear shallow water equation. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1567-1604. doi: 10.3934/dcds.2018065

[3]

Xiao-Biao Lin, Stephen Schecter. Traveling waves and shock waves. Discrete & Continuous Dynamical Systems, 2004, 10 (4) : i-ii. doi: 10.3934/dcds.2004.10.4i

[4]

Elena Kartashova. Nonlinear resonances of water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607

[5]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[6]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[7]

Walter A. Strauss. Vorticity jumps in steady water waves. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1101-1112. doi: 10.3934/dcdsb.2012.17.1101

[8]

Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete & Continuous Dynamical Systems, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1

[9]

Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465

[10]

Martina Chirilus-Bruckner, Guido Schneider. Interaction of oscillatory packets of water waves. Conference Publications, 2015, 2015 (special) : 267-275. doi: 10.3934/proc.2015.0267

[11]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[12]

Anca-Voichita Matioc. On particle trajectories in linear deep-water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1537-1547. doi: 10.3934/cpaa.2012.11.1537

[13]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 599-628. doi: 10.3934/dcds.2013.33.599

[14]

Miles H. Wheeler. On stratified water waves with critical layers and Coriolis forces. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4747-4770. doi: 10.3934/dcds.2019193

[15]

Jifeng Chu, Joachim Escher. Steady periodic equatorial water waves with vorticity. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4713-4729. doi: 10.3934/dcds.2019191

[16]

Mats Ehrnström, Gabriele Villari. Recent progress on particle trajectories in steady water waves. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 539-559. doi: 10.3934/dcdsb.2009.12.539

[17]

David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113

[18]

David Henry, Bogdan--Vasile Matioc. On the regularity of steady periodic stratified water waves. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1453-1464. doi: 10.3934/cpaa.2012.11.1453

[19]

Gerhard Tulzer. On the symmetry of steady periodic water waves with stagnation points. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1577-1586. doi: 10.3934/cpaa.2012.11.1577

[20]

David Henry, Hung-Chu Hsu. Instability of equatorial water waves in the $f-$plane. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 909-916. doi: 10.3934/dcds.2015.35.909

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (137)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]