\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion

Abstract Related Papers Cited by
  • Considered herein is the blow-up mechanism to the periodic modified Camassa-Holm equation with varying linear dispersion. We first consider the case when linear dispersion is absent and derive a finite-time blow-up result. The key feature is the ratio between solution and its gradient. Using the continuity of the solutions and the right transformation, we then obtain this blow-up criterion to the case with negative linear dispersion and determine that the finite time blow-up can still occur if the initial momentum density is bounded below by the magnitude of the linear dispersion and the initial datum has a local mild-oscillation region. Finally, we demonstrate that when the linear dispersion is non-negative, formation of singularity can be induced by an initial datum with a sufficiently steep profile.
    Mathematics Subject Classification: 35B44, 35G25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Brandolese, Local-in-space criteria for blow-up in shallow water and dispersive rod equations, Comm. Math. Phys., 330 (2014), 401-414.doi: 10.1007/s00220-014-1958-4.

    [2]

    L. Brandolese and M. F. Cortez, Blowup issues for a class of nonlinear dispersive wave equations, J. Differential Equations, 256 (2014), 3981-3998.doi: 10.1016/j.jde.2014.03.008.

    [3]

    L. Brandolese and M. F. Cortez, On permanent and breading waves in hyperelastic rods and rings, J. Funct. Anal., 266 (2014), 6954-6987.doi: 10.1016/j.jfa.2014.02.039.

    [4]

    A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.doi: 10.1007/s00205-006-0010-z.

    [5]

    A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl. (Singap.), 5 (2007), 1-27.doi: 10.1142/S0219530507000857.

    [6]

    R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.

    [7]

    M. Chen, Y. Liu, C. Qu and S. Zhang, Oscillatio-induced blow-up to the modified Camassa-Holm equation with linear dispersion, Adv. Math., 272 (2015), 225-251.doi: 10.1016/j.aim.2014.12.003.

    [8]

    K. S. Chou and C. Z. Qu, Integrable equations arising from motions of plane curves I, Physica D, 162 (2002), 9-33.doi: 10.1016/S0167-2789(01)00364-5.

    [9]

    A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.doi: 10.5802/aif.1757.

    [10]

    A. Constantin, On the scattering problem for the Camassa-Holm equation, Proc. Roy. Soc. London A, 457 (2001), 953-970.doi: 10.1098/rspa.2000.0701.

    [11]

    A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535.doi: 10.1007/s00222-006-0002-5.

    [12]

    A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586.

    [13]

    A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 26 (1998), 303-328.

    [14]

    A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5.

    [15]

    A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity, Ann. of Math., 173 (2011), 559-568.doi: 10.4007/annals.2011.173.1.12.

    [16]

    A. Constantin and H. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804.doi: 10.1007/s00014-003-0785-6.

    [17]

    A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2.

    [18]

    A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.

    [19]

    A. Constantin and W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math., 53 (2000), 603-610.doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.

    [20]

    A. Constantin and W. A. Strauss, Stability of a class of solitary waves in compressible elastic rods, Phys. Lett. A, 270 (2000), 140-148.doi: 10.1016/S0375-9601(00)00255-3.

    [21]

    H. Dai, Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127 (1998), 193-207.doi: 10.1007/BF01170373.

    [22]

    A. Degasperis and M. Procesi, Asymptotic integrability, in Symmetry and perturbation theory (ed. A. Degasperis & G. Gaeta), World Scientific, Singapore, (1999), 23-37.

    [23]

    J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87-117.doi: 10.1512/iumj.2007.56.3040.

    [24]

    A. S. Fokas, On a class of physically important integrable equation, Physica D, 87 (1995), 145-150.doi: 10.1016/0167-2789(95)00133-O.

    [25]

    Y. Fu, G. L. Gui, Y. Liu and C. Z. Qu, On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity, J. Differential Equations, 255 (2013), 1905-1938.doi: 10.1016/j.jde.2013.05.024.

    [26]

    B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: Generalizations of the Camassa-Holm equation, Physica D, 95 (1996), 229-243.doi: 10.1016/0167-2789(96)00048-6.

    [27]

    B. Fuchssteiner and A. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries, Physica D, 4 (1981/1982), 47-66. doi: 10.1016/0167-2789(81)90004-X.

    [28]

    G. L. Gui, Y. Liu , P. Olver and C. Z. Qu, Wave-breaking and peakons for a modified Camassa-Holm equation, Comm. Math. Phys., 319 (2013), 731-759.doi: 10.1007/s00220-012-1566-0.

    [29]

    H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons, Discrete Contin. Dyn. Syst., 14 (2006), 505-523.doi: 10.3934/dcds.2006.14.505.

    [30]

    S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group, J. Math. Phys., 40 (1999), 857-868.doi: 10.1063/1.532690.

    [31]

    J. Lenells, A variational approach to the stability of periodic peakons, J. Nonlinear Math. Phys., 11 (2004), 151-163.doi: 10.2991/jnmp.2004.11.2.2.

    [32]

    Y. Li and P. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differential Equations, 162 (2000), 27-63.doi: 10.1006/jdeq.1999.3683.

    [33]

    Y. Liu, P. Olver, C. Qu and S. Zhang, On the blow-up of solutions to the integrable modified Camassa-Holm equation, Anal. Appl. (Singap.), 12 (2014), 355-368.doi: 10.1142/S0219530514500274.

    [34]

    Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820.doi: 10.1007/s00220-006-0082-5.

    [35]

    Y.Matsuno, Smooth and singular multisolution solutions of a modified Camassa-Holm equation with cubic nonlinearity and linear dispersion, J. Phys. A., 47 (2014), 125203, 25pp.doi: 10.1088/1751-8113/47/12/125203.

    [36]

    G. Misołek, A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24 (1998), 203-208.doi: 10.1016/S0393-0440(97)00010-7.

    [37]

    V. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A, 42 (2009), 342002, 14pp.doi: 10.1088/1751-8113/42/34/342002.

    [38]

    P. Olver and P. Rosenau, Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support, Phys. Rev. E, 53 (1996), 1900-1906.doi: 10.1103/PhysRevE.53.1900.

    [39]

    Z. Qiao, A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys., 47 (2006), 112701, 9pp.doi: 10.1063/1.2365758.

    [40]

    Z. Qiao and X. Q. Li, An integrable equation with nonsmooth solitons, Theor. Math. Phys., 167 (2011), 584-589.doi: 10.1007/s11232-011-0044-8.

    [41]

    C. Z. Qu, X. C. Liu and Y. Liu, Stability of peakons for an integrable modified Camassa-Holm equation with cubic onlinearity, Comm. Math. Phys., 322 (2013), 967-997.doi: 10.1007/s00220-013-1749-3.

    [42]

    G. Rodriguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonlinear Anal., 46 (2001), 309-327.doi: 10.1016/S0362-546X(01)00791-X.

    [43]

    J. F. Toland, Stokes waves, Topol. Methods Nonlinear Anal., 7 (1996), 1-48.

    [44]

    Z. Xin and P. Zhang, On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.

    [45]

    Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation, Comm. Partial Differential Equations, 27 (2002), 1815-1844.doi: 10.1081/PDE-120016129.

    [46]

    Z. Yin, On the blow-up of solutions of the periodic Camassa-Holm equation, Dyn. Cont. Discrete Impuls. Syst. Ser. A, Math. Anal., 12 (2005), 375-381.

    [47]

    M. Zhu and S. Zhang, On the blow-up of solutions to the periodic modified integrable Camassa-Holm equation, Discrete Contin. Dyn. Syst., 36 (2016), 2347-2364.doi: 10.3934/dcds.2016.36.2347.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return