In this note we characterize isoperimetric regions inside almost-convex cones. More precisely, as in the case of convex cones, we show that isoperimetric sets are given by intersecting the cone with a ball centered at the origin.
Citation: |
Y. Alkhutov and V. G. Maz'ya, L1, p-coercitivity and estimates of the Green function of the Neumann problem in a convex domain, J. Math. Sci. , New York, 196 (2014), 245-261; English translation of Probl. Mat. Anal. , 73 (2013), 3-16 (Russian).
doi: 10.1007/s10958-014-1656-y.![]() ![]() ![]() |
|
F. J. Almgren, Jr. , Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Mem. Amer. Math. Soc. 4 (1976), ⅷ+199 pp.
![]() ![]() |
|
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Univ. Press. , USA, 2000.
![]() ![]() |
|
A. Boulkhemair
and A. Chakib
, On the uniform Poincaré inequality, Comm. Par. Diff. Eq., 32 (2007)
, 1439-1447.
doi: 10.1080/03605300600910241.![]() ![]() ![]() |
|
D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations and Applications 65, Birkhäuser, Boston, MA, 2005.
![]() ![]() |
|
X. Cabré, X. Ros-Oton and J. Serra, Sharp isoperimetric inequalities via the ABP method, To appear in J. Eur. Math. Soc. , arXiv: 1304.1724.
![]() |
|
A. Cañete
and C. Rosales
, Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities, Calc. Var. Par. Diff. Eq., 51 (2014)
, 887-913.
doi: 10.1007/s00526-013-0699-0.![]() ![]() ![]() |
|
D. Chenais
, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., 52 (1975)
, 189-219.
doi: 10.1016/0022-247X(75)90091-8.![]() ![]() ![]() |
|
M. Cicalese
and G.P. Leonardi
, A selection principle for the sharp quantitative isoperimetric
inequality, Arch. Ration. Mech. Anal., 206 (2012)
, 617-643.
doi: 10.1007/s00205-012-0544-1.![]() ![]() ![]() |
|
M. Cicalese, G. P. Leonardi and F. Maggi, Sharp stability inequalities for planar double bubbles, Preprint, 2015, arXiv: 1211.3698.
![]() |
|
R. Courant and D. Hilbert, Methods of Mathematical Physics, 1 (1953); 2 (1962). Wiley, New York.
![]() |
|
R. Dautray and J. L. Lions, Analyse Mathématique et Calcul Numérique Pour Les Sciences et Les Techniques, 3, Transformations, Sobolev, Opérateurs, asson, Paris, 1984.
![]() |
|
G. David, Singular Sets of Minimizers for the Mumford-Shah Functional, Progress in Mathematics, 233, Birkhäuser Verlag, Basel, Switzerland, 2005.
![]() ![]() |
|
G. De Philippis
and F. Maggi
, Regularity of free boundaries in anisotropic capillarity problems
and the validity of Young's law, Arch. Ration. Mech. Anal., 216 (2015)
, 473-568.
doi: 10.1007/s00205-014-0813-2.![]() ![]() ![]() |
|
E. Durand-Cartagena
and A. Lemenant
, Some stability results under domain variation for
Neumann problems in metric spaces, Ann. Acad. Sci. Fenn. Math., 35 (2010)
, 537-563.
doi: 10.5186/aasfm.2010.3533.![]() ![]() ![]() |
|
J.F. Escobar
, Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities
and an eigenvalue estimate, Comm. Pure Appl. Math., 43 (1990)
, 857-883.
doi: 10.1002/cpa.3160430703.![]() ![]() ![]() |
|
A. Figalli
and E. Indrei
, A sharp stability result for the relative isoperimetric inequality inside
convex cones, J. Geom. Anal., 23 (2013)
, 938-969.
doi: 10.1007/s12220-011-9270-4.![]() ![]() ![]() |
|
A. Figalli
, N. Fusco
, F. Maggi
, V. Millot
and M. Morini
, Isoperimetry and stability properties
of balls with respect to nonlocal energies, Comm. Math. Phys., 336 (2015)
, 441-507.
doi: 10.1007/s00220-014-2244-1.![]() ![]() ![]() |
|
A. Figalli
and F. Maggi
, On the isoperimetric problem for radial log-convex densities, Calc. Var. Partial Differential Equations, 48 (2013)
, 447-489.
doi: 10.1007/s00526-012-0557-5.![]() ![]() ![]() |
|
A. Figalli
, F. Maggi
and A. Pratelli
, A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math., 182 (2010)
, 167-211.
doi: 10.1007/s00222-010-0261-z.![]() ![]() ![]() |
|
B. Fuglede
, Stability in the isoperimetric problem for convex or nearly spherical domains in ℝn, Trans. Amer. Math. Soc., 314 (1989)
, 619-638.
doi: 10.2307/2001401.![]() ![]() ![]() |
|
N. Fusco
and V. Julin
, A strong form of the quantitative isoperimetric inequality, Calc. Var. Partial Differential Equations, 50 (2014)
, 925-937.
doi: 10.1007/s00526-013-0661-1.![]() ![]() ![]() |
|
N. Fusco
, F. Maggi
and A. Pratelli
, The sharp quantitative isoperimetric inequality, Ann. of Math. (2), 168 (2008)
, 941-980.
doi: 10.4007/annals.2008.168.941.![]() ![]() ![]() |
|
E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Math. , 80. Birkhäuser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0.![]() ![]() ![]() |
|
R. Hempel
, L. Seco
and B. Simon
, The essential spectrum of Neumann Laplacians on some
bounded singular domain, J. Funct. Anal., 102 (1991)
, 448-483.
doi: 10.1016/0022-1236(91)90130-W.![]() ![]() ![]() |
|
A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Burkhäuser Verlag, Basel, 2006.
![]() ![]() |
|
P.-L. Lions
and F. Pacella
, Isoperimetric inequalities for convex cones, Proc. Amer. Math. Soc., 109 (1990)
, 477-485.
doi: 10.1090/S0002-9939-1990-1000160-1.![]() ![]() ![]() |
|
J. -L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. Ⅰ. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, 181, Springer-Verlag, New York-Heidelberg, 1972.
![]() ![]() |
|
F. Maggi, Sets of Finite Perimeter and Geometric Variational Problems: An Introduction to Geometric Measure Theory, Cambridge Univ. Press. , 2012.
doi: 10.1017/CBO9781139108133.![]() ![]() ![]() |
|
V. G. Maz'ya, On the boundedness of first derivatives for solutions to the Neumann-Laplace problem in a convex domain, J. Math. Sci. , New York, 159 (2009), 104-112; English translation of Probl. Mat. Anal. , 40 (2009), 105-112. (Russian).
doi: 10.1007/s10958-009-9430-2.![]() ![]() ![]() |
|
F. Morgan, Riemannian Geometry. A Beginner's Guide. 2nd ed. , A. K. Peters Ltd. , Wellesley, MA. , 1998.
![]() ![]() |
|
F. Morgan
and M. Ritoré
, Isoperimetric regions in cones, Trans. Amer. Math. Soc., 354 (2002)
, 2327-2339.
doi: 10.1090/S0002-9947-02-02983-5.![]() ![]() ![]() |
|
M. Ritoré
and C. Rosales
, Existence and characterization of regions minimizing perimeter
under a volume constraint inside Euclidean cones, Trans. Amer. Math. Soc., 356 (2004)
, 4601-4622.
doi: 10.1090/S0002-9947-04-03537-8.![]() ![]() ![]() |
|
M. Ritoré
and E. Vernadakis
, Isoperimetric inequalities in convex cylinders and cylindrically
bounded convex bodies, Calc. Var. Par. Diff. Eq., 54 (2015)
, 643-663.
doi: 10.1007/s00526-014-0800-3.![]() ![]() ![]() |
|
D. Ruiz
, On the uniformity of the constant in the Poincaré inequality, Adv. Nonlinear Stud., 12 (2012)
, 889-903.
doi: 10.1515/ans-2012-0413.![]() ![]() ![]() |