This paper is concerned with constructing nodal radial solutions for generalized quasilinear Schrödinger equations in $\mathbb{R}^N$ with critical growth which arise from plasma physics, fluid mechanics, as well as the self-channeling of a high-power ultashort laser in matter. We find the critical exponents for a generalized quasilinear Schrödinger equations and obtain the existence of sign-changing solution with k nodes for any given integer $k ≥ 0$.
Citation: |
A. Ambrosetti
and P. H. Rabinowitz
, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973)
, 349-381.
doi: 10.1016/0022-1236(73)90051-7.![]() ![]() ![]() |
|
S. Bae
, H. O. Choi
and D. H. Pahk
, Existence of nodal solutions of nonlinear elliptic equations, Proc. Roy. Soc. Edinburgh Sect., 137 (2007)
, 1135-1155.
doi: 10.1017/S0308210505000727.![]() ![]() ![]() |
|
T. Bartsch
and M. Willem
, Infinitely many radial solutions of a semilinear elliptic problem on ℝN, Arch. Ration. Mech. Anal., 124 (1993)
, 261-276.
doi: 10.1007/BF00953069.![]() ![]() ![]() |
|
F. G. Bass
and N. N. Nasanov
, Nonlinear electromagnetic-spin waves, Phys. Rep., 169 (1990)
, 165-223.
doi: 10.1016/0370-1573(90)90093-H.![]() ![]() |
|
J. M. Bezerra do Ó
, O. H. Miyagaki
and S. H. M. Soares
, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010)
, 722-744.
doi: 10.1016/j.jde.2009.11.030.![]() ![]() ![]() |
|
G. Bianchi
, J. Chabrowski
and A. Szulkin
, On symmetric solutions of an elliptic equation with a nonlinearity involving critical Sobolev exponent, Nonlinear Anal. TMA., 25 (1995)
, 41-59.
doi: 10.1016/0362-546X(94)E0070-W.![]() ![]() ![]() |
|
A. De Bouard
, N. Hayashi
and J. Saut
, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Comm. Math. Phys., 189 (1997)
, 73-105.
doi: 10.1007/s002200050191.![]() ![]() ![]() |
|
H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma Phys. Fluids B 1 (1994), p968.
doi: 10.1063/1.870756.![]() ![]() |
|
H. Brezis
and E. Lieb
, A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc., 88 (1983)
, 486-490.
doi: 10.1090/S0002-9939-1983-0699419-3.![]() ![]() ![]() |
|
L. Brüll
and H. Lange
, Solitary waves for quasilinear Schrödinger equations, Exposition. Math., 4 (1986)
, 279-288.
doi: 10.1515/ans-2009-0303.![]() ![]() ![]() |
|
D. Cao
and X. Zhu
, on the existence and nodal character of semilinear elliptic equations, Acta. Math. Sci., 8 (1988)
, 345-359.
![]() ![]() |
|
G. Cerami
, S. Solimini
and M. Struwe
, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Func. Anal., 69 (1986)
, 289-306.
doi: 10.1016/0022-1236(86)90094-7.![]() ![]() ![]() |
|
X. L. Chen
and R. N. Sudan
, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993)
, 2082-2085.
doi: 10.1103/PhysRevLett.70.2082.![]() ![]() |
|
M. Colin
and L. Jeanjean
, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal. TMA., 56 (2004)
, 213-226.
doi: 10.1016/j.na.2003.09.008.![]() ![]() ![]() |
|
S. Cuccagna
, On instability of excited states of the nonloinear Schrödinger equation, Physica D, 238 (2009)
, 38-54.
doi: 10.1016/j.physd.2008.08.010.![]() ![]() ![]() |
|
Y. Deng
, The existence and nodal character of solutions in ℝN for semilinear elliptic equations involving critical Sobolev exponents, Acta. Math. Sci., 9 (1989)
, 385-402.
![]() ![]() |
|
Y. Deng, S. Peng and J. Wang, Nodal soliton solutions for generalized quasilinear Schrödinger equations J. Math. Phys. 55 (2014), 051501, 16pp.
doi: 10.1063/1.4874108.![]() ![]() ![]() |
|
Y. Deng
, S. Peng
and J. Wang
, Infinitely many sign-changing solutions for quasilinear Schrödinger equations in ℝN, Commun. Math. Sci., 9 (2011)
, 859-878.
doi: 10.4310/CMS.2011.v9.n3.a9.![]() ![]() ![]() |
|
Y. Deng
, S. Peng
and S. Yan
, Critical exponents and solitary wave solutions for generalized quaslinear Schrödinger equations, J. Differential Equations, 260 (2016)
, 1228-1262.
doi: 10.1016/j.jde.2015.09.021.![]() ![]() ![]() |
|
W. H. Fleming
, A selection-migration model in population genetic, J. Math. Bio., 2 (1975)
, 219-233.
doi: 10.1007/BF00277151.![]() ![]() ![]() |
|
D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations Of Second Order Springer-Verlag, Berlin, 2001.
doi: 10.1007/978-3-642-61798-0.![]() ![]() ![]() |
|
R. W. Hasse
, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. Phys. B, 37 (1980)
, 83-87.
doi: 10.1007/BF01325508.![]() ![]() ![]() |
|
P. L. Kelley
, Self focusing of optical beams, Phys. Rev. Lett., 15 (1965)
, 1005-1008.
doi: 10.1109/IQEC.2005.1561150.![]() ![]() |
|
A. M. Kosevich
, B. A. Ivanov
and A. S. Kovalev
, Magnetic solitons, Phys. Rep., 194 (1990)
, 117-238.
doi: 10.1016/0370-1573(90)90130-T.![]() ![]() |
|
S. Kurihara
, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981)
, 3262-3267.
doi: 10.1143/JPSJ.50.3262.![]() ![]() |
|
E. Laedke
, K. Spatschek
and L. Stenflo
, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983)
, 2764-2769.
doi: 10.1063/1.525675.![]() ![]() ![]() |
|
H. Lange
, M. Poppenberg
and H. Teismann
, Nash-Moser methods for the solution of quasilinear Schrödinger equations, Comm. Partial Differential Equations, 24 (1999)
, 1399-1418.
doi: 10.1080/03605309908821469.![]() ![]() ![]() |
|
J. Liu
, Y. Wang
and Z. Wang
, Soliton solutions for quasilinear Schrödinger equations. Ⅱ., J. Differential Equations, 187 (2003)
, 473-493.
doi: 10.1016/S0022-0396(02)00064-5.![]() ![]() ![]() |
|
J. Liu
, Y. Wang
and Z. Wang
, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004)
, 879-901.
doi: 10.1081/PDE-120037335.![]() ![]() ![]() |
|
J. Liu
and Z. Wang
, Soliton solutions for quasilinear Schrödinger equations. Ⅰ., Proc. Amer. Math. Soc., 131 (2003)
, 441-448.
doi: 10.1090/S0002-9939-02-06783-7.![]() ![]() ![]() |
|
X. Liu
, J. Liu
and Z. Wang
, Quasilinear elliptic equations with critical growth via pertubation method, J. Differential Equations, 254 (2013)
, 102-124.
doi: 10.1016/j.jde.2012.09.006.![]() ![]() ![]() |
|
V. G. Makhankov
and V. K. Fedyanin
, Nonlinear effects in quasi-one-dimensional models and condensed matter theory, Phys. Rep., 104 (1984)
, 1-86.
doi: 10.1016/0370-1573(84)90106-6.![]() ![]() ![]() |
|
C. Miranda
, Un'osservazione su un teorema di Brouwer, Boll. Un. Mat. Ital., 3 (1940)
, 5-7.
![]() ![]() |
|
A. Moameni
, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in ℝN, J. Differential Equations, 229 (2006)
, 570-587.
doi: 10.1016/j.jde.2006.07.001.![]() ![]() ![]() |
|
Z. Nehari
, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math., 105 (1961)
, 141-175.
doi: 10.1007/BF02559588.![]() ![]() ![]() |
|
M. Poppenberg
, K. Schmitt
and Z. Wang
, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002)
, 329-344.
doi: 10.1007/s005260100105.![]() ![]() ![]() |
|
P. Pucci
and J. Serrin
, A general variational identity, Indiana Univ. Math. J., 35 (1986)
, 681-703.
doi: 10.1512/iumj.1986.35.35036.![]() ![]() ![]() |
|
G. R. W. Quispel
and H. W. Capel
, Equation of motion for the Heisenberg spin chain, Phys. A, 110 (1982)
, 41-80.
doi: 10.1016/0378-4371(82)90104-2.![]() ![]() ![]() |
|
B. Ritchie
, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994)
, 687-689.
doi: 10.1103/PhysRevE.50.R687.![]() ![]() |
|
Y. Shen
and Y. Wang
, Soliton solutions for generalized quasilinear Schrodinger equations, Nonlinear Anal. TMA., 80 (2013)
, 194-201.
doi: 10.1016/j.na.2012.10.005.![]() ![]() ![]() |
|
W. A. Strauss
, Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977)
, 149-162.
doi: 10.1007/bf01626517.![]() ![]() ![]() |
|
T. Weth
, Energy bounds for entire nodal solutions of autonomous superlinear equations, Calc. Var. Partial Differential Equations, 27 (2006)
, 421-437.
doi: 10.1007/s00526-006-0015-3.![]() ![]() ![]() |