We prove that the derivative nonlinear Schrödinger equation is globally well-posed in $H^{\frac 12} (\mathbb{R} )$ when the mass of initial data is strictly less than 4π.
Citation: |
M. Agueh
, Sharp Gagliardo-Nirenberg Inequalities and Mass Transport Theory, J.Dyn.Differ.Equ., 18 (2006)
, 1069-1093.
doi: 10.1007/s10884-006-9039-9.![]() ![]() ![]() |
|
J. Colliander
, M. Keel
, G. Staffilani
, H. Takaoka
and T. Tao
, Global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., 33 (2001)
, 649-669.
doi: 10.1137/S0036141001384387.![]() ![]() ![]() |
|
J. Colliander
, M. Keel
, G. Staffilani
, H. Takaoka
and T. Tao
, A refined global well-posedness result for Schrödinger equations with derivatives, SIAM J. Math. Anal., 34 (2002)
, 64-86.
doi: 10.1137/S0036141001394541.![]() ![]() ![]() |
|
Z. Guo
, N. Hayashi
, Y. Lin
and P. I. Naumkin
, Modified scattering operator for the derivative nonlinear Schrodinger equation, SIAM J. Math. Anal., 45 (2013)
, 3854-3871.
doi: 10.1137/12089956X.![]() ![]() ![]() |
|
N. Hayashi
, The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonl. Anal., 20 (1993)
, 823-833.
doi: 10.1016/0362-546X(93)90071-Y.![]() ![]() ![]() |
|
N. Hayashi
and T. Ozawa
, On the derivative nonlinear Schrödinger equation, Physica D., 55 (1992)
, 14-36.
doi: 10.1016/0167-2789(92)90185-P.![]() ![]() ![]() |
|
N. Hayashi
and T. Ozawa
, Finite energy solution of nonlinear Schr¨odinger equations of derivative type, SIAM J. Math. Anal., 25 (1994)
, 1488-1503.
doi: 10.1137/S0036141093246129.![]() ![]() ![]() |
|
D. J. Kaup
and A. C. Newell
, An exact solution for a derivative nonlinear Schrödinger equation, J. Math. Phys., 17 (1978)
, 789-801.
![]() ![]() |
|
K. Kondo
, K. Kajiwara
and K. Matsui
, Solution and integrability of a generalized derivative nonlinear Schrödinger equation, J. Phys. Soc. Japan, 66 (1997)
, 60-66.
doi: 10.1143/JPSJ.66.60.![]() ![]() ![]() |
|
X. Liu
, G. Simpson
and C. Sulem
, Focusing singularity in a derivative nonlinear Schr¨odinger equation, Physica D: Nonlinear Phenomena, 262 (2013)
, 48-58.
doi: 10.1016/j.physd.2013.07.011.![]() ![]() ![]() |
|
C. Miao
, Y. Wu
and G. Xu
, Global well-posedness for Schr¨odinger equation with derivative in $H^{\frac 12} (\mathbb{R} )$, J. Diff. Equ., 251 (2011)
, 2164-2195.
doi: 10.1016/j.jde.2011.07.004.![]() ![]() ![]() |
|
W. Mio
, T. Ogino
, K. Minami
and S. Takeda
, Modified nonlinear Schrödinger equation for Alfven waves propagating along the magnetic field in cold plasmas, J. Phys. Soc. Japan, 41 (1976)
, 265-271.
doi: 10.1143/JPSJ.41.265.![]() ![]() ![]() |
|
E. Mj∅lhus
, On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys., 16 (1976)
, 321-334.
![]() |
|
T. Ozawa
, On the nonlinear Schrödinger equations of derivative type, Indiana Univ. Math. J., 45 (1996)
, 137-163.
doi: 10.1512/iumj.1996.45.1962.![]() ![]() ![]() |
|
H. Takaoka
, Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Diff. Equ., 4 (1990)
, 561-680.
![]() ![]() |
|
H. Takaoka
, Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces, Electron. J. Diff. Equ., 42 (2001)
, 1-23.
![]() ![]() |
|
T. Tsuchida
and M. Wadati
, Complete integrability of derivative nonlinear Schrödinger-type equations, Inverse Problems, 15 (1999)
, 1363-1373.
doi: 10.1088/0266-5611/15/5/317.![]() ![]() ![]() |
|
Y. Wu
, Global well-posedness of the derivative nonlinear Schrödinger equations in energy space, Analysis & PDE, 6 (2013)
, 1989-2002.
doi: 10.2140/apde.2013.6.1989.![]() ![]() ![]() |
|
Y. Wu
, Global well-posedness on the derivative nonlinear Schrödinger equation, Analysis & PDE, 8 (2015)
, 1101-1112.
doi: 10.2140/apde.2015.8.1101.![]() ![]() ![]() |