A fully discrete Lagrangian scheme for solving a family of fourth order equations numerically is presented. The discretization is based on the equations' underlying gradient flow structure with respect to the Wasserstein metric, and preserves numerous of their most important structural properties by construction, like conservation of mass and entropy-dissipation.
In this paper, the long-time behavior of our discretization is analysed: We show that discrete solutions decay exponentially to equilibrium at the same rate as smooth solutions of the original problem. Moreover, we give a proof of convergence of discrete entropy minimizers towards Barenblatt-profiles or Gaussians, respectively, using $Γ$-convergence.
Citation: |
Figure 1. Left: Numerically observed decay of $H_{\alpha,\lambda}(t)-{\mathbf{H}_{\alpha ,\lambda }^{\min }}$ and $F_{\alpha,\lambda}(t)-{\mathbf{F}_{\alpha ,\lambda }^{\min }}$ along a time period of $t\in[0,0.8]$, using $K=25,50,100,200$, in comparison to the upper bounds $({\mathcal{H}_{\alpha ,\lambda }}(u^0)-{\mathcal{H}_{\alpha ,\lambda }}({{\text{b}}_{\alpha ,\lambda }}))\exp(-2\lambda t)$ and $({\mathcal{F}_{\alpha ,\lambda }}(u^0)-{\mathcal{F}_{\alpha ,\lambda }}({{\text{b}}_{\alpha ,\lambda }}))\exp(-2\lambda t)$, respectively. Right: Convergence of discrete minimizers $u_{\delta }^{\min }$ with a rate of $K^{-1.5}$.
L. Ambrosio, N. Gigli and G. Savaré,
Gradient Flows in Metric Spaces and in the Space of Probability Measures Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
doi: 978-3-7643-2428-5.![]() ![]() ![]() |
|
L. Ambrosio
, S. Lisini
and G. Savaré
, Stability of flows associated to gradient vector fields and convergence of iterated transport maps, Manuscripta Mathematica, 121 (2006)
, 1-50.
doi: 10.1007/s00229-006-0003-0.![]() ![]() ![]() |
|
J. Becker
and G. Grün
, The thin-film equation: Recent advances and some new perspectives, Journal of Physics: Condensed Matter, 17 (2015)
, 291-307.
doi: 10.1088/0953-8984/17/9/002.![]() ![]() |
|
F. Bernis
and F. Avner
, Higher order nonlinear degenerate parabolic equations, Journal of Differential Equations, 83 (1990)
, 179-206.
doi: 10.1016/0022-0396(90)90074-Y.![]() ![]() ![]() |
|
M. Bertsch
, R. Dal Passo
, H. Garcke
and G. Grün
, The thin viscous flow equation in higher space dimensions, Journal of Differential Equations, 3 (1998)
, 417-440.
![]() ![]() |
|
A. Blanchet
, V. Calvez
and J. A. Carrillo
, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel mode, SIAM Journal on Numerical Analysis, 46 (2008)
, 691-721.
doi: 10.1137/070683337.![]() ![]() ![]() |
|
P. M. Bleher
, J. L. Lebowitz
and E. R. Speer
, Existence and positivity of solutions of a fourth-order nonlinear PDE describing interface fluctuations, Communications on Pure and Applied Mathematics, 47 (1994)
, 923-942.
doi: 10.1002/cpa.3160470702.![]() ![]() ![]() |
|
A. Braides,
$Γ$ -convergence for Beginners Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2002.
doi: 10.1093/acprof:oso/9780198507840.001.0001.![]() ![]() ![]() |
|
C. J. Budd
, G. J. Collins
, W. Z. Huang
and R. D. Russell
, Self-similar numerical solutions of the porous-medium equation using moving mesh methods, The Royal Society of London. Philosophical Transactions. Series A. Mathematical, Physical and Engineering Sciences, 357 (1999)
, 1047-1077.
doi: 10.1098/rsta.1999.0364.![]() ![]() ![]() |
|
M. Bukal
, E. Emmrich
and A. Jüngel
, Entropy-stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation, Numerische Mathematik, 127 (2014)
, 365-396.
doi: 10.1007/s00211-013-0588-7.![]() ![]() ![]() |
|
M. Burger
, J. A. Carrillo
and M.-T. Wolfram
, A mixed finite element method for nonlinear diffusion equations, Kinetic and Related Models, 3 (2010)
, 59-83.
doi: 10.3934/krm.2010.3.59.![]() ![]() ![]() |
|
M. J. Cáceres
, J. A. Carrillo
and G. Toscani
, Long-time behavior for a nonlinear fourth-order parabolic equation, Transactions of the American Mathematical Society, 357 (2005)
, 1161-1175.
doi: 10.1090/S0002-9947-04-03528-7.![]() ![]() ![]() |
|
E. A. Carlen
and S. Ulusoy
, Asymptotic equipartition and long time behavior of solutions of a thin-film equation, Journal of Differential Equations, 241 (2007)
, 279-292.
doi: 10.1016/j.jde.2007.07.005.![]() ![]() ![]() |
|
J. A. Carrillo
, J. Dolbeault
, I. Gentil
and A. Jüngel
, Entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 6 (2006)
, 1027-1050.
doi: 10.3934/dcdsb.2006.6.1027.![]() ![]() ![]() |
|
J. A. Carrillo
, A. Jüngel
, P. A. Markowich
, G. Toscani
and A. Unterreiter
, Entropy dissipation methods for degenerate parabolic problems and generalized {S}obolev inequalities, Monatshefte für Mathematik, 133 (2001)
, 1-82.
doi: 10.1007/s006050170032.![]() ![]() ![]() |
|
J. A. Carrillo
, A. Jüngel
and S. Tang
, Positive entropic schemes for a nonlinear fourth-order parabolic equation, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 3 (2003)
, 1-20.
![]() ![]() |
|
J. A. Carrillo
and J. S. Moll
, Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms, SIAM Journal on Scientific Computing, 31 (2009/10)
, 4305-4329.
doi: 10.1137/080739574.![]() ![]() ![]() |
|
J. A. Carrillo
and G. Toscani
, Long-time asymptotics for strong solutions of the thin film equation, Communications in Mathematical Physics, 225 (2002)
, 551-571.
doi: 10.1007/s002200100591.![]() ![]() ![]() |
|
J. A. Carrillo and M. -T. Wolfram, A finite element method for nonlinear continuity equations in Lagrangian coordinates, work in progress.
![]() |
|
F. Cavalli
and G. Naldi
, A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation, Kinetic and Related Models, 3 (2010)
, 123-142.
doi: 10.3934/krm.2010.3.123.![]() ![]() ![]() |
|
R. Dal Passo
, H. Garcke
and G. Grün
, On a fourth-order degenerate parabolic equation: Global entropy estimates, existence, and qualitative behavior of solutions, SIAM Journal on Mathematical Analysis, 29 (1998)
, 321-342.
doi: 10.1137/S0036141096306170.![]() ![]() ![]() |
|
J. Denzler
and R. J. McCann
, Nonlinear diffusion from a delocalized source: affine self-similarity, time reversal, & nonradial focusing geometries, Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, 25 (2008)
, 865-888.
doi: 10.1016/j.anihpc.2007.05.002.![]() ![]() ![]() |
|
B. Derrida
, J. L. Lebowitz
, E. R. Speer
and H. Spohn
, Dynamics of an anchored Toom interface, Journal of Physics. A. Mathematical and General, 24 (1991)
, 4805-4834.
doi: 10.1088/0305-4470/24/20/015.![]() ![]() ![]() |
|
B. Derrida
, J. L. Lebowitz
, E. R. Speer
and H. Spohn
, Fluctuations of a stationary nonequilibrium interface, Physical Review Letters, 67 (1991)
, 165-168.
doi: 10.1103/PhysRevLett.67.165.![]() ![]() ![]() |
|
B. Düring
, D. Matthes
and J. P. Milišić
, A gradient flow scheme for nonlinear fourth order equations, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 14 (2010)
, 935-959.
doi: 10.3934/dcdsb.2010.14.935.![]() ![]() ![]() |
|
L. C. Evans
, O. Savin
and W. Gangbo
, Diffeomorphisms and nonlinear heat flows, SIAM Journal on Mathematical Analysis, 37 (2005)
, 737-751.
doi: 10.1137/04061386X.![]() ![]() ![]() |
|
J. Fischer
, Uniqueness of solutions of the Derrida-Lebowitz-Speer-Spohn equation and quantum drift-diffusion models, SIAM Journal on Mathematical Analysis, 38 (2013)
, 2004-2047.
doi: 10.1080/03605302.2013.823548.![]() ![]() ![]() |
|
L. Giacomelli
and F. Otto
, Variational formulation for the lubrication approximation of the Hele-Shaw flow, Calculus of Variations and Partial Differential Equations, 13 (2001)
, 377-403.
doi: 10.1007/s005260000077.![]() ![]() ![]() |
|
U. Gianazza
, G. Savaré
and G. Toscani
, The {W}asserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Archive for Rational Mechanics and Analysis, 194 (2009)
, 133-220.
doi: 10.1007/s00205-008-0186-5.![]() ![]() ![]() |
|
E. Giusti,
Minimal Surfaces and Functions of Bounded Variation Monographs in Mathematics, Birkhäuser Verlag, Basel, 1984.
doi: 10.1007/978-1-4684-9486-0.![]() ![]() ![]() |
|
L. Gosse
and G. Toscani
, Identification of asymptotic decay to self-similarity for one-dimensional filtration equations, SIAM Journal on Numerical Analysis, 43 (2006)
, 2590-2606.
doi: 10.1137/040608672.![]() ![]() ![]() |
|
L. Gosse
and G. Toscani
, Lagrangian numerical approximations to one-dimensional convolution-diffusion equations, SIAM Journal on Scientific Computing, 28 (2006)
, 1203-1227.
doi: 10.1137/050628015.![]() ![]() ![]() |
|
G. Grün
, Droplet spreading under weak slippage-existence for the Cauchy problem, Communications in Partial Differential Equations, 29 (2004)
, 1697-1744.
doi: 10.1081/PDE-200040193.![]() ![]() ![]() |
|
M. P. Gualdani
, A. Jüngel
and G. Toscani
, A nonlinear fourth-order parabolic equation with nonhomogeneous boundary conditions, SIAM Journal on Mathematical Analysis, 37 (2006)
, 1761-1779.
doi: 10.1137/S0036141004444615.![]() ![]() ![]() |
|
R. Jordan
, D. Kinderlehrer
and F. Otto
, The variational formulation of the Fokker-Planck equation, SIAM Journal on Mathematical Analysis, 29 (1998)
, 1-17.
doi: 10.1137/S0036141096303359.![]() ![]() ![]() |
|
A. Jüngel
and D. Matthes
, An algorithmic construction of entropies in higher-order nonlinear PDEs, Nonlinearity, 19 (2006)
, 633-659.
doi: 10.1088/0951-7715/19/3/006.![]() ![]() ![]() |
|
A. Jüngel
and D. Matthes
, The Derrida-Lebowitz-Speer-Spohn equation: Existence, nonuniqueness, and decay rates of the solutions, SIAM Journal on Mathematical Analysis, 39 (2008)
, 1996-2015.
doi: 10.1137/060676878.![]() ![]() ![]() |
|
A. Jüngel
and R. Pinnau
, Global nonnegative solutions of a nonlinear fourth-order parabolic equation for quantum systems, SIAM Journal on Mathematical Analysis, 32 (2000)
, 760-777.
doi: 10.1137/S0036141099360269.![]() ![]() ![]() |
|
A. Jüngel
and R. Pinnau
, A positivity-preserving numerical scheme for a nonlinear fourth order parabolic system, SIAM Journal on Numerical Analysis, 39 (2001)
, 385-406.
doi: 10.1137/S0036142900369362.![]() ![]() ![]() |
|
A. Jüngel
and G. Toscani
, Exponential time decay of solutions to a nonlinear fourth-order parabolic equation, Journal of Applied Mathematics and Physics, 54 (2003)
, 377-386.
doi: 10.1007/s00033-003-1026-y.![]() ![]() ![]() |
|
A. Jüngel
and I. Violet
, First-order entropies for the Derrida-Lebowitz-Speer-Spohn equation, Discrete and Continuous Dynamical Systems. Series B. A Journal Bridging Mathematics and Sciences, 8 (2007)
, 861-877.
doi: 10.3934/dcdsb.2007.8.861.![]() ![]() ![]() |
|
D. Kinderlehrer
and N. J. Walkington
, Approximation of parabolic equations using the Wasserstein metric, M2AN. Mathematical Modelling and Numerical Analysis, 33 (1999)
, 837-852.
doi: 10.1051/m2an:1999166.![]() ![]() ![]() |
|
R. C. MacCamy
and E. Socolovsky
, A numerical procedure for the porous media equation, Computers & Mathematics with Applications. An International Journal, 11 (1985)
, 315-319.
doi: 10.1016/0898-1221(85)90156-7.![]() ![]() ![]() |
|
D. Matthes
, R. J. McCann
and G. Savaré
, A family of nonlinear fourth order equations of gradient flow type, Communications in Partial Differential Equations, 34 (2009)
, 1352-1397.
doi: 10.1080/03605300903296256.![]() ![]() ![]() |
|
D. Matthes
and H. Osberger
, Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM. Mathematical Modelling and Numerical Analysis, 48 (2014)
, 697-726.
doi: 10.1051/m2an/2013126.![]() ![]() ![]() |
|
D. Matthes
and H. Osberger
, A convergent Lagrangian discretization for a nonlinear fourth-order equation, Foundations of Computational Mathematics, 17 (2015)
, 1-54.
doi: 10.1007/s10208-015-9284-6.![]() ![]() |
|
A. Oron
, S. H. Davis
and S. G. Bankoff
, Long-scale evolution of thin liquid films, American Physical Society, 69 (1997)
, 931-980.
doi: 10.1103/RevModPhys.69.931.![]() ![]() |
|
G. Russo
, Deterministic diffusion of particles, Communications on Pure and Applied Mathematics, 43 (1990)
, 697-733.
doi: 10.1002/cpa.3160430602.![]() ![]() ![]() |
|
C. Villani,
Topics in Optimal Transportation American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/gsm/058.![]() ![]() ![]() |
Evolution of a discrete solution
Left: Numerically observed decay of
Snapshots of the densities