This paper deals with the Neumann problem for the coupled quasilinear chemotaxis-haptotaxis model of cancer invasion given by
$\left\{ \begin{gathered} ut = \nabla \cdot \left( {{{\left( {u + 1} \right)}^{m - 1}}\nabla u} \right) - \nabla \cdot \left( {u\nabla v} \right) - \nabla \cdot \left( {u\nabla w} \right) + u\left( {1 - u - w} \right), \hfill \\ ut = \Delta v - v + u, \hfill \\ wt = - vw, \hfill \\ \end{gathered} \right.$
where the parameter $m≥q1$ and $\mathbb{R}^N(N≥q2)$ is a bounded domain with smooth boundary. If $m>\frac{2N}{N+2}$, then for any sufficiently smooth initial data there exists a classical solution which is global in time and bounded. The results of this paper partly extend previous results of several authors.
Citation: |
N. D. Alikakos
, $L^p $ bounds of solutions of reaction-diffusion equations, Comm. Partial Diff. Eqns., 4 (1979)
, 827-868.
doi: 10.1080/03605307908820113.![]() ![]() ![]() |
|
N. Bellomo
, N. K. Li
and P. K. Maini
, On the foundations of cancer modelling: Selected topics, speculations, and perspectives, Math. Models Methods Appl. Sci., 18 (2008)
, 593-646.
doi: 10.1142/S0218202508002796.![]() ![]() ![]() |
|
N. Bellomo
, A. Belloquid
, Y. Tao
and M. Winkler
, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015)
, 1663-1763.
doi: 10.1142/S021820251550044X.![]() ![]() ![]() |
|
X. Cao
, Boundedness in a three-dimensional chemotaxis-haptotaxis model, Z. Angew. Math. Phys., 67 (2016)
, Art. 11-13 pp.
doi: 10.1007/s00033-015-0601-3.![]() ![]() ![]() |
|
M. A. J. Chaplain
and A. R. A. Anderson
, Mathematical modelling of tissue invasion, in Cancer Modelling and Simulation, L. Preziosi, ed., Chapman Hall/CRC, Boca Raton, FL, (2003)
, 269-297.
![]() ![]() |
|
M. A. J. Chaplain
and G. Lolas
, Mathematical modelling of cancer invasion of tissue: The role of the urokinase plasminogen activation system, Math. Models Methods Appl. Sci., 15 (2005)
, 1685-1734.
doi: 10.1142/S0218202505000947.![]() ![]() ![]() |
|
M. A. J. Chaplain
and G. Lolas
, Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity, Net. Hetero. Med., 1 (2006)
, 399-439.
doi: 10.3934/nhm.2006.1.399.![]() ![]() ![]() |
|
L. Corrias
, B. Perthame
and H. Zaag
, A chemotaxis model motivated by angiogenesis, C. R. Acad. Sci. Paris, Ser. I., 336 (2003)
, 141-146.
doi: 10.1016/S1631-073X(02)00008-0.![]() ![]() ![]() |
|
L. Corrias
, B. Perthame
and H. Zaag
, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004)
, 1-28.
doi: 10.1007/s00032-003-0026-x.![]() ![]() ![]() |
|
A. Friedman
and G. Lolas
, Analysis of a mathematical model of tumor lymphangiogenesis, Math. Models Methods Appl. Sci., 15 (2005)
, 95-107.
doi: 10.1142/S0218202505003915.![]() ![]() ![]() |
|
D. D. Haroske and H. Triebel,
Distributions, Sobolev Spaces, Elliptic Equations, European Mathematical Society, Zurich, 2008.
![]() ![]() |
|
H. Hajaiej
, L. Molinet
, T. Ozawa
and B. Wang
, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, Harmonic Analysis and Nonlinear Partial Differential Equations, in: RIMS Kôkyûroku Bessatsu, B26 (2011)
, 159-175.
![]() ![]() |
|
M. Herrero
and J. Velázquez
, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Super. Pisa Cl. Sci., 24 (1997)
, 633-683.
![]() ![]() |
|
T. Hillen
, K. J. Painter
and M. Winkler
, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods Appl. Sci., 23 (2013)
, 165-198.
doi: 10.1142/S0218202512500480.![]() ![]() ![]() |
|
D. Horstmann
and M. Winkler
, Boundedness vs. blow-up in a chemotaxis system, J. Diff. Eqns., 215 (2005)
, 52-107.
doi: 10.1016/j.jde.2004.10.022.![]() ![]() ![]() |
|
J. Liu
, J. Zheng
and Y. Wang
, Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source, Z. Angew. Math. Phys., 67 (2016)
, 1-33.
doi: 10.1007/s00033-016-0620-8.![]() ![]() ![]() |
|
T. Nagai
, T. Senba
and K. Yoshida
, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., 40 (1997)
, 411-433.
![]() ![]() |
|
S. Ishida
, K. Seki
and T. Yokota
, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Diff. Eqns., 256 (2014)
, 2993-3010.
doi: 10.1016/j.jde.2014.01.028.![]() ![]() ![]() |
|
E. Keller
and L. Segel
, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970)
, 399-415.
doi: 10.1016/0022-5193(70)90092-5.![]() ![]() |
|
E. Keller
and L. Segel
, Traveling bands of chemotactic bacteria: A theoretical analysis, J. Theor. Biol., 30 (1971)
, 235-248.
doi: 10.1016/0022-5193(71)90051-8.![]() ![]() |
|
G. Liţanu
and C. Morales-Rodrigo
, Asymptotic behavior of global solutions to a model of cell invasion, Math. Models Methods Appl. Sci., 20 (2010)
, 1721-1758.
doi: 10.1142/S0218202510004775.![]() ![]() ![]() |
|
G. Meral
, C. Stinner
and C. Surulescu
, On a multiscale model involving cell contractivity and its effects on tumor invasion, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015)
, 189-213.
doi: 10.3934/dcdsb.2015.20.189.![]() ![]() ![]() |
|
K. Osaki
, T. Tsujikawa
, A. Yagi
and M. Mimura
, Exponential attractor for a chemotaxisgrowth system of equations, Nonlinear Anal. TMA., 51 (2002)
, 119-144.
doi: 10.1016/S0362-546X(01)00815-X.![]() ![]() ![]() |
|
C. Stinner
, C. Surulescu
and G. Meral
, A multiscale model for pH-tactic invasion with time-varying carrying capacities, IMA J. Appl. Math., 80 (2015)
, 1300-1321.
doi: 10.1093/imamat/hxu055.![]() ![]() ![]() |
|
C. Stinner
, C. Surulescu
and M. Winkler
, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014)
, 1969-2007.
doi: 10.1137/13094058X.![]() ![]() ![]() |
|
Y. Tao
, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source, J. Math. Anal. Appl., 354 (2009)
, 60-69.
doi: 10.1016/j.jmaa.2008.12.039.![]() ![]() ![]() |
|
Y. Tao
, Boundedness in a two-dimensional chemotaxis-haptotaxis system, Mathematics, 70 (2014)
, 165-174.
![]() |
|
Y. Tao
and M. Wang
, Global solution for a chemotactic-haptotactic model of cancer invasion, Nonlinearity,, 21 (2008)
, 2221-2238.
doi: 10.1088/0951-7715/21/10/002.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, A chemotaxis-haptotaxis model: The roles of porous medium diffusion and logistic source, SIAM J. Math. Anal., 43 (2011)
, 685-704.
doi: 10.1137/100802943.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Diff. Eqns., 252 (2012)
, 692-715.
doi: 10.1016/j.jde.2011.08.019.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis mode, Proceedings of the Royal Society of Edinburgh, 144 (2014)
, 1067-1084.
doi: 10.1017/S0308210512000571.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014)
, 1225-1239.
doi: 10.1088/0951-7715/27/6/1225.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Diff. Eqns., 257 (2014)
, 784-815.
doi: 10.1016/j.jde.2014.04.014.![]() ![]() ![]() |
|
Y. Tao
and M. Winkler
, Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015)
, 4229-4250.
doi: 10.1137/15M1014115.![]() ![]() ![]() |
|
C. Walker
and G. F. Webb
, Global existence of classical solutions for a haptotaxis model, SIAM J. Math. Anal., 38 (2007)
, 1694-1713.
doi: 10.1137/060655122.![]() ![]() ![]() |
|
L. Wang
, Y. Li
and C. Mu
, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source, Discrete Contin. Dyn. Syst. Ser. A., 34 (2014)
, 789-802.
doi: 10.3934/dcds.2014.34.789.![]() ![]() ![]() |
|
Y. Wang
, Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion, J. Diff. Eqns., 260 (2016)
, 1975-1989.
doi: 10.1016/j.jde.2015.09.051.![]() ![]() ![]() |
|
M. Winkler
, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Diff. Eqns., 35 (2010)
, 1516-1537.
doi: 10.1080/03605300903473426.![]() ![]() ![]() |
|
M. Winkler
, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Diff. Eqns., 248 (2010)
, 2889-2905.
doi: 10.1016/j.jde.2010.02.008.![]() ![]() ![]() |
|
M. Winkler
, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013)
, 748-767.
doi: 10.1016/j.matpur.2013.01.020.![]() ![]() ![]() |
|
J. Zheng
, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Diff. Eqns., 259 (2015)
, 120-140.
doi: 10.1016/j.jde.2015.02.003.![]() ![]() ![]() |