[1]
|
S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metal., 27 (1979), 1085-1095.
doi: 10.1016/0001-6160(79)90196-2.
|
[2]
|
D.G. Aronson and H.F. Weinberger, Multidimensional diffusion arising in population genetics, Adv. Math., 30 (1978), 33-76.
doi: 10.1016/0001-8708(78)90130-5.
|
[3]
|
R. Bamón, I. Flores and M. del Pino, Ground states of semilinear elliptic equations: A geometric approach, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 551-581.
doi: 10.1016/S0294-1449(00)00126-8.
|
[4]
|
P.W. Bates and J. Shi, Existence and instability of spike layer solutions to singular perturbation problems, J. Funct. Anal., 196 (2002), 211-264.
doi: 10.1016/S0022-1236(02)00013-7.
|
[5]
|
H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.
doi: 10.1007/BF00250555.
|
[6]
|
H. Berestycki, P.-L. Lions and L.A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in $\mathbb R^n$, Indiana Univ. Math. J., 30 (1981), 141-157.
doi: 10.1512/iumj.1981.30.30012.
|
[7]
|
G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations on ${\bf R}^n$ or ${\bf R}^n_{+}$ through the method of moving planes, Comm. Partial Differential Equations, 22 (1997), 1671-1690.
doi: 10.1080/03605309708821315.
|
[8]
|
J. Busca, M.A. Jendoubi and P. Poláčik, Convergence to equilibrium for semilinear parabolic problems in $\mathbb{R}^n$, Comm. Partial Differential Equations, 27 (2002), 1793-1814.
doi: 10.1081/PDE-120016128.
|
[9]
|
X. Cabré and A. Capella, On the stability of radial solutions of semilinear elliptic equations in all of $\mathbb{R}^n$, C. R. Math. Acad. Sci. Paris, 338 (2004), 769-774.
doi: 10.1016/j.crma.2004.03.013.
|
[10]
|
X. Cabré and J. Solá-Morales, Layer solutions in a half-space for boundary reactions, Comm. Pure Appl. Math., 58 (2005), 1678-1732.
doi: 10.1002/cpa.20093.
|
[11]
|
L.A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math., 42 (1989), 271-297.
doi: 10.1002/cpa.3160420304.
|
[12]
|
A. Capella-Kort, Stable Solutions of Nonlinear Elliptic Equations: Qualitative and Regularity Properties, PhD thesis, Universitat Politècnica de Catalunya, 2005.
|
[13]
|
E.N. Dancer and Y. Du, Some remarks on Liouville type results for quasilinear elliptic equations, Proc. Amer. Math. Soc., 131 (2003), 1891-1899.
doi: 10.1090/S0002-9939-02-06733-3.
|
[14]
|
Y. Du and H. Matano, Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc., 12 (2010), 279-312.
doi: 10.4171/JEMS/198.
|
[15]
|
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.
|
[16]
|
E. Fašangová, Asymptotic analysis for a nonlinear parabolic equation on $\mathbb R$, Comment. Math. Univ. Carolinae, 39 (1998), 525--544.
|
[17]
|
E. Feireisl, On the long time behaviour of solutions to nonlinear diffusion equations on Rn, Nonlin. Diff. Eq. Appl., 4 (1997), 43-60.
doi: 10.1007/PL00001410.
|
[18]
|
E. Feireisl and H. Petzeltová, Convergence to a ground state as a threshold phenomenon in nonlinear parabolic equations, Differential Integral Equations, 10 (1997), 181-196.
|
[19]
|
P.C. Fife, Long time behavior of solutions of bistable nonlinear diffusion equations, Arch. Rational Mech. Anal., 70 (1979), 31-46.
doi: 10.1007/BF00276380.
|
[20]
|
J. Földes and P. Poláčik, Convergence to a steady state for asymptotically autonomous semilinear heat equations on $\mathbb{R}^n$, J. Differential Equations, 251 (2011), 1903-1922.
doi: 10.1016/j.jde.2011.04.002.
|
[21]
|
A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc. , Englewood Cliffs, NJ, 1964.
|
[22]
|
V.A. Galaktionov, S.I. Pokhozhaev and A.E. Shishkov, On convergence in gradient systems with a degenerate equilibrium position, Mat. Sb., 198 (2007), 65-88.
doi: 10.1070/SM2007v198n06ABEH003862.
|
[23]
|
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
|
[24]
|
C. Gui, W.-M. Ni and X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in Rn, Comm. Pure Appl. Math., 45 (1992), 1153-1181.
doi: 10.1002/cpa.3160450906.
|
[25]
|
C.K. R.T. Jones, Asymptotic behaviour of a reaction-diffusion equation in higher space dimensions, Rocky Mountain J. Math., 13 (1983), 355-364.
doi: 10.1216/RMJ-1983-13-2-355.
|
[26]
|
C.K. R.T. Jones, Spherically symmetric solutions of a reaction-diffusion equation, J. Diff. Equations, 49 (1983), 142-169.
doi: 10.1016/0022-0396(83)90023-2.
|
[27]
|
Y.I. Kanel', On the stabilization of solutions of the Cauchy problem for the equations arising in the theory of combusion, Mat. Sbornik, 59 (1962), 245-288.
|
[28]
|
B. S. Kerner and V. V. Osipov, Autosolitons, Kluwer, Dordrecht, 1994.
|
[29]
|
E. H. Lieb and M. Loss, Analysis, American Mathematical Society, Providence, RI, 1997.
|
[30]
|
C.S. Lin and W.-M. Ni, A counterexample to the nodal domain conjecture and a related semilinear equation, Proc. Amer. Math. Soc., 102 (1988), 271-277.
doi: 10.1090/S0002-9939-1988-0920985-9.
|
[31]
|
A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, vol. 16 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, Basel, 1995.
|
[32]
|
H.P. McKean, Nagumo's equation, Adv. Math., 4 (1970), 209-223.
doi: 10.1016/0001-8708(70)90023-X.
|
[33]
|
A.G. Merzhanov and E.N. Rumanov, Physics of reaction waves, Rev. Mod. Phys., 71 (1999), 1173-1210.
doi: 10.1103/RevModPhys.71.1173.
|
[34]
|
A. S. Mikhailov, Foundations of Synergetics, Springer-Verlag, Berlin, 1990.
|
[35]
|
C.B. Muratov, A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 867-892.
doi: 10.3934/dcdsb.2004.4.867.
|
[36]
|
C.B. Muratov and M. Novaga, Front propagation in infinite cylinders. I. A variational approach, Comm. Math. Sci., 6 (2008), 799-826.
doi: 10.4310/CMS.2008.v6.n4.a1.
|
[37]
|
C.B. Muratov and M. Novaga, Global stability and exponential convergence to variational traveling waves in cylinders, SIAM J. Math. Anal., 44 (2012), 293-315.
doi: 10.1137/110833269.
|
[38]
|
C.B. Muratov and X. Zhong, Threshold phenomena for symmetric decreasing solutions of reaction-diffusion equations, Nonlin. Diff. Eq. Appl., 20 (2013), 1519-1552.
doi: 10.1007/s00030-013-0220-7.
|
[39]
|
J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989.
|
[40]
|
J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IEEE, 50 (1962), 2061-2070.
doi: 10.1109/JRPROC.1962.288235.
|
[41]
|
P. Poláčik, Morse indices and bifurcations of positive solutions of $Δ u+f(u)=0$ on $\mathbb{R}^n$, Indiana Univ. Math. J., 50 (2001), 1407-1432.
doi: 10.1512/iumj.2001.50.1909.
|
[42]
|
P. Poláčik and K.P. Rybakowski, Nonconvergent bounded trajectories in semilinear heat equations, J. Differential Equations, 124 (1996), 472-494.
doi: 10.1006/jdeq.1996.0020.
|
[43]
|
P. Poláčik and E. Yanagida, Localized solutions of a semilinear parabolic equation with a recurrent nonstationary asymptotics, SIAM J. Math. Anal., 46 (2014), 3481-3496.
doi: 10.1137/140958566.
|
[44]
|
P. Poláčik, Threshold solutions and sharp transitions for nonautonomous parabolic equations on $\mathbb{R}^n$, Arch. Ration. Mech. Anal., 199 (2011), 69-97.
doi: 10.1007/s00205-010-0316-8.
|
[45]
|
P. Quittner and P. Souplet, Superlinear Parabolic Problems, Birkhäuser Advanced Texts: Basler Lehrbücher. , Birkhäuser Verlag, Basel, Switzerland, 2007.
|
[46]
|
V. Roussier, Stability of radially symmetric travelling waves in reaction-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 21 (2004), 341-379.
doi: 10.1016/S0294-1449(03)00042-8.
|
[47]
|
J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations, Indiana Univ. Math. J., 49 (2000), 897-923.
doi: 10.1512/iumj.2000.49.1893.
|
[48]
|
J. Shi and X. Wang, Hair-triggered instability of radial steady states, spread and extinction in semilinear heat equations, J. Differential Equations, 231 (2006), 235-251.
doi: 10.1016/j.jde.2006.06.008.
|
[49]
|
L. Simon, Asymptotics for a class of non-linear evolution equations, with applications to geometric problems, Annals Math., 118 (1983), 525-571.
doi: 10.2307/2006981.
|
[50]
|
M. Tang, Existence and uniqueness of fast decay entire solutions of quasilinear elliptic equations, J. Differential Equations, 164 (2000), 155-179.
doi: 10.1006/jdeq.1999.3752.
|
[51]
|
K. Uchiyama, Asymptotic behavior of solutions of reaction-diffusion equations with varying drift coefficients, Arch. Rational Mech. Anal., 90 (1985), 291-311.
doi: 10.1007/BF00276293.
|
[52]
|
J. Xin, Front propagation in heterogeneous media, SIAM Review, 42 (2000), 161-230.
doi: 10.1137/S0036144599364296.
|
[53]
|
A. Zlatoš, Sharp transition between extinction and propagation of reaction, J. Amer. Math. Soc., 19 (2006), 251-263.
doi: 10.1090/S0894-0347-05-00504-7.
|