# American Institute of Mathematical Sciences

February  2017, 37(2): 1061-1073. doi: 10.3934/dcds.2017044

## A dynamic theory for contact angle hysteresis on chemically rough boundary

 1 Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China 2 LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, NCMIS, Chinese Academy of Sciences, Beijing 100190, China

* Corresponding author: Xiao-Ping Wang

Received  August 2015 Revised  April 2016 Published  November 2016

Fund Project: This publication was supported in part by the Hong Kong RGC-GRF grants 605513 and 605311, Hong Kong RGC-CRF grant C6004-14G and NSFC grant 11571354.

We study the interface dynamics and contact angle hysteresis in a two dimensional, chemically patterned channel described by the Cahn-Hilliard equation with a relaxation boundary condition. A system for the dynamics of the contact angle and contact point is derived in the sharp interface limit. We then analyze the behavior of the solution using the phase plane analysis. We observe the stick-slip of the contact point and the contact angle hysteresis. As the size of the pattern decreases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle without any switching in between. Numerical examples are presented to verify our analysis.

Citation: Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044
##### References:
 [1] X. Chen, X.-P. Wang and X. Xu, Analysis of the cahn-hilliard equation with a relaxation boundary condition modeling the contact angle dynamics, Arch. Rational Mech. Anal., 213 (2014), 1-24.  doi: 10.1007/s00205-013-0713-x. [2] P. de Gennes, Wetting: Statics and dynamics, Simple Views on Condensed Matter, 12 (2003), 357-394.  doi: 10.1142/9789812564849_0041. [3] A. DeSimone, N. Gruenewald and F. Otto, A new model for contact angle hysteresis, Networks and Heterogeneous Media, 2 (2007), 211-225.  doi: 10.3934/nhm.2007.2.211. [4] R. Pego, Front migration in the nonlinear cahn-hilliard equation, Proc. R. Soc. Lond., A, 422 (1989), 261-278.  doi: 10.1098/rspa.1989.0027. [5] T. Qian, X. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306.  doi: 10.1103/PhysRevE.68.016306. [6] T. Qian, X. Wang and P. Sheng, Power-law slip profile of the moving contact line in two-phase immiscible flows, Phys. Rev. Lett., 93 (2004), 094501.  doi: 10.1103/PhysRevLett.93.094501. [7] A. Turco, F. Alouges and A. DeSimone, Wetting on rough surfaces and contact angle hysteresis: Numerical experiments based on a phase field model, ESAIM: Mathematical Modelling and Numerical Analysis, 43 (2009), 1027-1044, http://www.esaim-m2an.org/article_S0764583X09000168. [8] X. Wang, T. Qian and P. Sheng, Moving contact line on chemically patterned surfaces, Journal of Fluid Mechanics, 605 (2008), 59-78.  doi: 10.1017/S0022112008001456. [9] X. Xu and X. P. Wang, Analysis of wetting and contact angle hysteresis on chemically patterned surfaces, SIAM J. Appl. Math., 71 (2011), 1753-1779.  doi: 10.1137/110829593. [10] T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95 (1805), 65-87.

show all references

##### References:
 [1] X. Chen, X.-P. Wang and X. Xu, Analysis of the cahn-hilliard equation with a relaxation boundary condition modeling the contact angle dynamics, Arch. Rational Mech. Anal., 213 (2014), 1-24.  doi: 10.1007/s00205-013-0713-x. [2] P. de Gennes, Wetting: Statics and dynamics, Simple Views on Condensed Matter, 12 (2003), 357-394.  doi: 10.1142/9789812564849_0041. [3] A. DeSimone, N. Gruenewald and F. Otto, A new model for contact angle hysteresis, Networks and Heterogeneous Media, 2 (2007), 211-225.  doi: 10.3934/nhm.2007.2.211. [4] R. Pego, Front migration in the nonlinear cahn-hilliard equation, Proc. R. Soc. Lond., A, 422 (1989), 261-278.  doi: 10.1098/rspa.1989.0027. [5] T. Qian, X. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306.  doi: 10.1103/PhysRevE.68.016306. [6] T. Qian, X. Wang and P. Sheng, Power-law slip profile of the moving contact line in two-phase immiscible flows, Phys. Rev. Lett., 93 (2004), 094501.  doi: 10.1103/PhysRevLett.93.094501. [7] A. Turco, F. Alouges and A. DeSimone, Wetting on rough surfaces and contact angle hysteresis: Numerical experiments based on a phase field model, ESAIM: Mathematical Modelling and Numerical Analysis, 43 (2009), 1027-1044, http://www.esaim-m2an.org/article_S0764583X09000168. [8] X. Wang, T. Qian and P. Sheng, Moving contact line on chemically patterned surfaces, Journal of Fluid Mechanics, 605 (2008), 59-78.  doi: 10.1017/S0022112008001456. [9] X. Xu and X. P. Wang, Analysis of wetting and contact angle hysteresis on chemically patterned surfaces, SIAM J. Appl. Math., 71 (2011), 1753-1779.  doi: 10.1137/110829593. [10] T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95 (1805), 65-87.
Contact angle formed by the liquid-air interface with the solid boundary
Interface motion in a channel
The phase plane for the homogeneous boundary
The phase plane and the attracting region bounded by the nullclines.
The advancing contact angle trajectory for large (left) and small (right) pattern period $T$.
Advancing and receding contact angles for large ($T=2\pi/5$) and small ($T=2\pi/40$) pattern period. For large $T$, we observe stick-slip of the contact point (see Fig. 7). For small $T$, we observe contact angle hysteresis.
The contact point stick-slip behaviour for pattern surface with period $T=2\pi/5$. Top: advancing trajectory of contact angle $\theta$. Middle: contact point velocity $x_t$. Below: $x_t$ in log scale
Advancing and receding contact angles for inhomogeneous surfaces with smooth $\theta_Y$ with large and small patterned period.
 [1] Pierluigi Colli, Gianni Gilardi, Paolo Podio-Guidugli, Jürgen Sprekels. An asymptotic analysis for a nonstandard Cahn-Hilliard system with viscosity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 353-368. doi: 10.3934/dcdss.2013.6.353 [2] Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511 [3] Antonio DeSimone, Natalie Grunewald, Felix Otto. A new model for contact angle hysteresis. Networks and Heterogeneous Media, 2007, 2 (2) : 211-225. doi: 10.3934/nhm.2007.2.211 [4] Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207 [5] Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013 [6] Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033 [7] Alain Miranville, Ramon Quintanilla, Wafa Saoud. Asymptotic behavior of a Cahn-Hilliard/Allen-Cahn system with temperature. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2257-2288. doi: 10.3934/cpaa.2020099 [8] Ciprian G. Gal, Hao Wu. Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 1041-1063. doi: 10.3934/dcds.2008.22.1041 [9] Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127 [10] Peter Howard, Bongsuk Kwon. Spectral analysis for transition front solutions in Cahn-Hilliard systems. Discrete and Continuous Dynamical Systems, 2012, 32 (1) : 125-166. doi: 10.3934/dcds.2012.32.125 [11] Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303 [12] Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete and Continuous Dynamical Systems, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037 [13] Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163 [14] Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31 [15] Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275 [16] S. Maier-Paape, Ulrich Miller. Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square. Discrete and Continuous Dynamical Systems, 2006, 15 (4) : 1137-1153. doi: 10.3934/dcds.2006.15.1137 [17] Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure and Applied Analysis, 2021, 20 (2) : 495-510. doi: 10.3934/cpaa.2020277 [18] Amy Novick-Cohen, Andrey Shishkov. Upper bounds for coarsening for the degenerate Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 251-272. doi: 10.3934/dcds.2009.25.251 [19] Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure and Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881 [20] Keith Promislow, Qiliang Wu. Undulated bilayer interfaces in the planar functionalized Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022035

2021 Impact Factor: 1.588