[1]
|
R. A. Adams, Sobolev Spaces, Academic Press, San Diego -London, 1975.
|
[2]
|
M. Bahiana and Y. Oono, Cell dynamical system approach to block copolymers, Physical Review A, 41 (1990), 6763-6771.
doi: 10.1103/PhysRevA.41.6763.
|
[3]
|
P. W. Bates and P. C. Fife, Spectral comparison principles for the Cahn-Hilliard and phase-field equations, and time scales for coarsening, Physica D, 43 (1990), 335-348.
doi: 10.1016/0167-2789(90)90141-B.
|
[4]
|
P. W. Bates and P. C. Fife, The dynamics of nucleation for the Cahn-Hilliard equation, SIAM Journal on Applied Mathematics, 53 (1993), 990-1008.
doi: 10.1137/0153049.
|
[5]
|
D. Blömker, B. Gawron and T. Wanner, Nucleation in the one-dimensional stochastic Cahn-Hilliard model, Discrete and Continuous Dynamical Systems, Series A, 27 (2010), 25-52.
doi: 10.3934/dcds.2010.27.25.
|
[6]
|
C.-K. Chen and P. C. Fife, Nonlocal models of phase transitions in solids, Advances in Mathematical Sciences and Applications, 10 (2000), 821-849.
|
[7]
|
R. Choksi, M. A. Peletier and J. F. Williams, On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal Cahn-Hilliard functional, SIAM Journal on Applied Mathematics, 69 (2009), 1712-1738.
doi: 10.1137/080728809.
|
[8]
|
R. Choksi and X. Ren, On the derivation of a density functional theory for microphase separation of diblock copolymers, Journal of Statistical Physics, 113 (2003), 151-176.
doi: 10.1023/A:1025722804873.
|
[9]
|
E. B. Davies, Linear Operators and Their Spectra, vol. 106 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2007.
|
[10]
|
S. Day, J.-P. Lessard and K. Mischaikow, Validated continuation for equilibria of PDEs, SIAM Journal on Numerical Analysis, 45 (2007), 1398-1424.
doi: 10.1137/050645968.
|
[11]
|
J. P. Desi, H. Edrees, J. Price, E. Sander and T. Wanner, The dynamics of nucleation in stochastic Cahn-Morral systems, SIAM Journal on Applied Dynamical Systems, 10 (2011), 707-743.
doi: 10.1137/100801378.
|
[12]
|
E. Doedel, AUTO: A program for the automatic bifurcation analysis of autonomous systems, Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing, Vol. Ⅰ (Winnipeg, Man., 1980), 30 (1981), 265-284.
|
[13]
|
P. C. Fife and M. Kowalczyk, A class of pattern-forming models, Journal of Nonlinear Science, 9 (1999), 641-669.
doi: 10.1007/s003329900081.
|
[14]
|
P. C. Fife, Models for phase separation and their mathematics, Electronic Journal of Differential Equations, 2000 (2000), 1-26.
|
[15]
|
P. C. Fife, Pattern formation in gradient systems, in Handbook of dynamical systems, North-Holland, Amsterdam, 2 (2002), 677-722.
|
[16]
|
P. C. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions, in Trends in Nonlinear Analysis, Springer, Berlin, 2003,153-191.
|
[17]
|
P. C. Fife and D. Hilhorst, The Nishiura-Ohnishi free boundary problem in the 1D case, SIAM Journal on Mathematical Analysis, 33 (2001), 589-606.
doi: 10.1137/S0036141000372507.
|
[18]
|
P. C. Fife, H. Kielhöfer, S. Maier-Paape and T. Wanner, Perturbation of doubly periodic solution branches with applications to the Cahn-Hilliard equation, Physica D, 100 (1997), 257-278.
doi: 10.1016/S0167-2789(96)00190-X.
|
[19]
|
M. Gameiro and J.-P. Lessard, Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs, Journal of Differential Equations, 249 (2010), 2237-2268.
doi: 10.1016/j.jde.2010.07.002.
|
[20]
|
M. Gameiro and J.-P. Lessard, Efficient rigorous numerics for higher-dimensional PDEs via one-dimensional estimates, SIAM Journal on Numerical Analysis, 51 (2013), 2063-2087.
doi: 10.1137/110836651.
|
[21]
|
M. Grinfeld and A. Novick-Cohen, Counting stationary solutions of the Cahn-Hilliard equation by transversality arguments, Proceedings of the Royal Society of Edinburgh, 125 (1995), 351-370.
doi: 10.1017/S0308210500028079.
|
[22]
|
I. Johnson, E. Sander and T. Wanner, Branch interactions and long-term dynamics for the diblock copolymer model in one dimension, Discrete and Continuous Dynamical Systems. Series A, 33 (2013), 3671-3705.
doi: 10.3934/dcds.2013.33.3671.
|
[23]
|
S. Maier-Paape, U. Miller, K. Mischaikow and T. Wanner, Rigorous numerics for the Cahn-Hilliard equation on the unit square, Revista Matematica Complutense, 21 (2008), 351-426.
doi: 10.5209/rev_REMA.2008.v21.n2.16380.
|
[24]
|
S. Maier-Paape, K. Mischaikow and T. Wanner, Structure of the attractor of the Cahn-Hilliard equation on a square, International Journal of Bifurcation and Chaos, 17 (2007), 1221-1263.
doi: 10.1142/S0218127407017781.
|
[25]
|
S. Maier-Paape and T. Wanner, Solutions of nonlinear planar elliptic problems with triangle symmetry, Journal of Differential Equations, 136 (1997), 1-34.
doi: 10.1006/jdeq.1996.3240.
|
[26]
|
S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. Part Ⅰ: Probability and wavelength estimate, Communications in Mathematical Physics, 195 (1998), 435-464.
doi: 10.1007/s002200050397.
|
[27]
|
S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: Nonlinear dynamics, Archive for Rational Mechanics and Analysis, 151 (2000), 187-219.
doi: 10.1007/s002050050196.
|
[28]
|
J. T. Marti, Evaluation of the least constant in Sobolev's inequality for $H^{1}(0,\,s)$, SIAM Journal on Numerical Analysis, 20 (1983), 1239-1242.
doi: 10.1137/0720094.
|
[29]
|
R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, SIAM, Philadelphia, 2009.
|
[30]
|
K. Nagatou, Validated computation for infinite dimensional eigenvalue problems, in 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics, IEEE Computer Society, 2007, 3-13.
|
[31]
|
K. Nagatou, N. Yamamoto and M. T. Nakao, An approach to the numerical verification of solutions for nonlinear elliptic problems with local uniqueness, Numerical Functional Analysis and Optimization, 20 (1999), 543-565.
doi: 10.1080/01630569908816910.
|
[32]
|
Y. Nishiura, Far-from-Equilibrium Dynamics, vol. 209 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 2002.
|
[33]
|
Y. Nishiura and I. Ohnishi, Some mathematical aspects of the micro-phase separation in diblock copolymers, Physica D, 84 (1995), 31-39.
doi: 10.1016/0167-2789(95)00005-O.
|
[34]
|
T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621-2632.
doi: 10.1021/ma00164a028.
|
[35]
|
M. Plum, Existence and enclosure results for continua of solutions of parameter-dependent nonlinear boundary value problems, Journal of Computational and Applied Mathematics, 60 (1995), 187-200.
doi: 10.1016/0377-0427(94)00091-E.
|
[36]
|
M. Plum, Existence and multiplicity proofs for semilinear elliptic boundary value problems by computer assistance, Jahresbericht der Deutschen Mathematiker-Vereinigung, 110 (2008), 19-54.
|
[37]
|
M. Plum, Computer-assisted proofs for semilinear elliptic boundary value problems, Japan Journal of Industrial and Applied Mathematics, 26 (2009), 419-442.
doi: 10.1007/BF03186542.
|
[38]
|
W. Richardson, Steepest descent and the least $C$ for Sobolev's inequality, Bulletin of the London Mathematical Society, 18 (1986), 478-484.
doi: 10.1112/blms/18.5.478.
|
[39]
|
S. M. Rump, INTLAB -INTerval LABoratory, in Developments in Reliable Computing (ed. T. Csendes), Kluwer Academic Publishers, Dordrecht, 1999, 77--104, Http://www.ti3.tuhh.de/rump/.
|
[40]
|
S. M. Rump, Verification methods: Rigorous results using floating-point arithmetic, Acta Numerica, 19 (2010), 287-449.
doi: 10.1017/S096249291000005X.
|
[41]
|
S. M. Rump, Verified bounds for singular values, in particular for the spectral norm of a matrix and its inverse, BIT. Numerical Mathematics, 51 (2011), 367-384.
doi: 10.1007/s10543-010-0294-0.
|
[42]
|
E. Sander and T. Wanner, Monte Carlo simulations for spinodal decomposition, Journal of Statistical Physics, 95 (1999), 925-948.
doi: 10.1023/A:1004550416829.
|
[43]
|
E. Sander and T. Wanner, Unexpectedly linear behavior for the Cahn-Hilliard equation, SIAM Journal on Applied Mathematics, 60 (2000), 2182-2202.
doi: 10.1137/S0036139999352225.
|
[44]
|
T. Stephens and T. Wanner, Rigorous validation of isolating blocks for flows and their Conley indices, SIAM Journal on Applied Dynamical Systems, 13 (2014), 1847-1878.
doi: 10.1137/140971075.
|
[45]
|
T. Wanner, Maximum norms of random sums and transient pattern formation, Transactions of the American Mathematical Society, 356 (2004), 2251-2279.
doi: 10.1090/S0002-9947-03-03480-9.
|
[46]
|
K. Watanabe, Y. Kametaka, A. Nagai, K. Takemura and H. Yamagishi, The best constant of Sobolev inequality on a bounded interval, Journal of Mathematical Analysis and Applications, 340 (2008), 699-706.
doi: 10.1016/j.jmaa.2007.08.054.
|
[47]
|
Y. Watanabe, K. Nagatou, M. Plum and M. T. Nakao, Verified computations of eigenvalue exclosures for eigenvalue problems in Hilbert spaces, SIAM Journal on Numerical Analysis, 52 (2014), 975-992.
doi: 10.1137/120894683.
|
[48]
|
E. Zeidler, Nonlinear Functional Analysis and its Applications. Ⅰ: Fixed-Point Theorems, Springer-Verlag, New York -Berlin -Heidelberg, 1986.
doi: 10.1007/978-1-4612-4838-5.
|
[49]
|
P. Zgliczyński and K. Mischaikow, Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation, Foundations of Computational Mathematics, 1 (2001), 255-288.
doi: 10.1007/s002080010010.
|