Advanced Search
Article Contents
Article Contents

Strichartz estimates for charge transfer models

Abstract Full Text(HTML) Related Papers Cited by
  • In this note, we prove Strichartz estimates for scattering states of scalar charge transfer models in $\mathbb{R}^{3}$ . Following the idea of Strichartz estimates based on [3,10], we also show that the energy of the whole evolution is bounded independently of time without using the phase space method, as for example, in [5]. One can easily generalize our arguments to $\mathbb{R}^{n}$ for $n≥q3$ . We also discuss the extension of these results to matrix charge transfer models in $\mathbb{R}^{3}$ .

    Mathematics Subject Classification: Primary:35Q35, 37K40.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] K. Cai, Fine properties of charge transfer models, preprint, arXiv: math/0311048.
    [2] S. Cuccagna, Stabilization of solutions to nonlinear Schrödinger equations, Comm. Pure Appl. Math., 54 (2001), 1110-1145.  doi: 10.1002/cpa.1018.
    [3] S. Cuccagna and M. Maeda, On weak interaction between a ground state and a non-textendashtrapping potential, J. Differential Equations, 256 (2014), 1395-1466.  doi: 10.1016/j.jde.2013.11.002.
    [4] M. B. Erdogan and W. Schlag, Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: Ⅱ, J. Anal. Math., 99 (2006), 199-248.  doi: 10.1007/BF02789446.
    [5] J. M. Graf, Phase space analysis of the charge transfer model, Helv. Physica Acta, 63 (1990), 107-138. 
    [6] J.-L. JourneA. Soffer and C. D. Sogge, Decay estimates for Schrödinger operators, Comm. Pure Appl. Math., 44 (1991), 573-604.  doi: 10.1002/cpa.3160440504.
    [7] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955-980.  doi: 10.1353/ajm.1998.0039.
    [8] L. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations Universitext. Springer, New York, 2009. doi: 978-0-387-84898-3.
    [9] I. Rodnianski and W. Schlag, Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math., 155 (2004), 451-513.  doi: 10.1007/s00222-003-0325-4.
    [10] I. RodnianskiW. Schlag and A. Soffer, Dispersive analysis of charge transfer models, Comm. Pure Appl. Math., 58 (2005), 149-216.  doi: 10.1002/cpa.20066.
    [11] W. Schlag, Dispersive estimates for Schrödinger operators: A survey, in Mathematical aspects of nonlinear dispersive equations, Ann. of Math. Stud. , (eds. J. Bourgain, C. Kenig and S. Klainerman), Princeton Univ. Press, 163 (2007), 255-285.
    [12] K. Yajima, The Wk, p-continuity of wave operators for Schrödinger operators, J. Math. Soc. Japan, 47 (1995), 551-581.  doi: 10.2969/jmsj/04730551.
    [13] K. Yajima, A multichannel scattering theory for some time dependent Hamiltonians, charge transfer problem, Comm. Math. Phys., 75 (1980), 153-178.  doi: 10.1007/BF01222515.
  • 加载中

Article Metrics

HTML views(252) PDF downloads(148) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint