We consider a model equation from [
Citation: |
[1] |
W. Craig, Nonstrictly hyperbolic nonlinear systems, Math. Ann., 277 (1987), 213-232.
doi: 10.1007/BF01457361.![]() ![]() ![]() |
[2] |
W. Craig, C. Sulem and P.-L. Sulem, Nonlinear modulation of gravity waves: A rigorous approach, Nonlinearity, 5 (1992), 497-522.
doi: 10.1088/0951-7715/5/2/009.![]() ![]() ![]() |
[3] |
W. -P. Düll, Justification of the Nonlinear Schrödinger approximation for a quasilinear wave
equation, arXiv: 1602.08016
![]() |
[4] |
W. -P. Düll and M. Heẞ, Existence of long time solutions and validity of the Nonlinear
Schrödinger approximation for a quasilinear dispersive equation, arXiv: 1605.08704
![]() |
[5] |
W.-P. Düll, G. Schneider and C.E. Wayne, Justification of the nonlinear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth, Arch. Ration. Mech. Anal., 220 (2016), 543-602.
doi: 10.1007/s00205-015-0937-z.![]() ![]() ![]() |
[6] |
P. Germain, Space-time resonances, arXiv: 1102.1695
![]() |
[7] |
P. Germain, N. Masmoudi and J. Shatah, Global solutions for the gravity water waves equation in dimension 3, Ann. of Math., 175 (2012), 691-754.
doi: 10.4007/annals.2012.175.2.6.![]() ![]() ![]() |
[8] |
J.K. Hunter, M. Ifrim, D. Tataru and T.K. Wong, Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Amer. Math. Soc., 143 (2015), 3407-3412.
doi: 10.1090/proc/12215.![]() ![]() ![]() |
[9] |
L.A. Kalyakin, Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium, Mat. Sb. (N.S.), 132 (1987), 470-495, 592.
![]() ![]() |
[10] |
P. Kirrmann, G. Schneider and A. Mielke, The validity of modulation equations for extended systems with cubic nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 85-91.
doi: 10.1017/S0308210500020989.![]() ![]() ![]() |
[11] |
D. Lannes, Space time resonances [after Germain, Masmoudi, Shatah], Séminaire Bourbaki. Vol. 2011/2012. Astérisque, 352 (2013), 355-388.
![]() ![]() |
[12] |
G. Schneider, Justification of modulation equations for hyperbolic systems via normal forms, NoDEA Nonlinear Differential Equations Appl., 5 (1998), 69-82.
doi: 10.1007/s000300050034.![]() ![]() ![]() |
[13] |
G. Schneider, Justification and failure of the nonlinear Schröodinger equation in case of non-trivial quadratic resonances, J. Differential Equations, 216 (2005), 354-386.
doi: 10.1016/j.jde.2005.04.018.![]() ![]() ![]() |
[14] |
G. Schneider and C.E. Wayne, Justification of the NLS approximation for a quasilinear water wave model, J. Differential Equations, 251 (2011), 238-269.
doi: 10.1016/j.jde.2011.04.011.![]() ![]() ![]() |
[15] |
J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38 (1985), 685-696.
doi: 10.1002/cpa.3160380516.![]() ![]() ![]() |
[16] |
N. Totz, A justification of the modulation approximation to the 3D full water wave problem, Comm. Math. Phys., 335 (2015), 369-443.
doi: 10.1007/s00220-014-2259-7.![]() ![]() ![]() |
[17] |
N. Totz and S. Wu, A rigorous justification of the modulation approximation to the 2D full water wave problem, Comm. Math. Phys., 310 (2012), 817-883.
doi: 10.1007/s00220-012-1422-2.![]() ![]() ![]() |
[18] |
V.E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Journal of Applied Mechanics and Technical Physics, 9 (1968), 190-194.
doi: 10.1007/BF00913182.![]() ![]() |