
-
Previous Article
A leading term for the velocity of stationary viscous incompressible flow around a rigid body performing a rotation and a translation
- DCDS Home
- This Issue
-
Next Article
High-frequency instabilities of small-amplitude solutions of Hamiltonian PDEs
Discrete conley index theory for zero dimensional basic sets
1. | Institute of Mathematics, Statistics and Scientific Computation, Universidade Estadual de Campinas, Campinas, SP 13.083-859, Brazil |
2. | Institute of Mathematics and Statistics, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ 20.550-900, Brazil |
In this article the discrete Conley index theory is used to study diffeomorphisms on closed differentiable n-manifolds with zero dimensional hyperbolic chain recurrent set. A theorem is established for the computation of the discrete Conley index of these basic sets in terms of the dynamical information contained in their associated structure matrices. Also, a classification of the reduced homology Conley index of these basic sets is presented using its Jordan real form. This, in turn, is essential to obtain a characterization of a pair of connection matrices for a Morse decomposition of zero-dimensional basic sets of a diffeomorphism.
References:
[1] |
P. Bartiomiejczyk and Z. Dzedzej,
Connection Matrix theory for discrete dynamical systems, Banach Center Publications, 47 (1999), 67-78.
|
[2] |
P. Blanchard and J. Franks,
An obstruction to the existence of certain dynamics in surface diffeomorphisms, Ergodic Theory & Dynamical Systems, 1 (1981), 255-260.
|
[3] |
R. Bowen,
Topological entropy and Axiom A, Proc. Sympos. Pure Math., 14 (1970), 23-41.
|
[4] |
R. Bowen and J. Franks,
Homology for zero-dimensional nonwandering sets, Annals of Mathematics, 106 (1977), 73-92.
doi: 10.2307/1971159. |
[5] |
C. Conley,
Isolated Invariant Sets and Morse Index CBMS Regional Conference Series in Mathematics, n. 38, American Mathematical Society, Providence, R. I. , 1978. |
[6] |
J. M. Franks,
Homology and Dynamical Systems, CBMS Regional Conference Series in Mathematics, n. 49, American Mathematical Society, Providence, R. I. , 1982. |
[7] |
J. M. Franks and D. S. Richeson,
Shift equivalence and the Conley Index, Transactions of the American Mathematical Society, 352 (2000), 3305-3322.
doi: 10.1090/S0002-9947-00-02488-0. |
[8] |
R. D. Franzosa,
Index filtrations and the homology index braid for partially ordered Morse decompositions, Transactions of the American Mathematical Society, 298 (1986), 193-213.
doi: 10.1090/S0002-9947-1986-0857439-7. |
[9] |
R. D. Franzosa,
The continuation theory for Morse decompositions and connection matrices, Transactions of the American Mathematical Society, 310 (1988), 781-803.
doi: 10.1090/S0002-9947-1988-0973177-6. |
[10] |
R. D. Franzosa,
The connection matrix theory for Morse decompositions, Transactions of the American Mathematical Society, 311 (1989), 561-592.
doi: 10.1090/S0002-9947-1989-0978368-7. |
[11] |
M. Mrozek,
Leray functor and cohomological Conley index for discrete dynamical systems, Transactions of the American Mathematical Society, 318 (1990), 149-178.
doi: 10.1090/S0002-9947-1990-0968888-1. |
[12] |
J. F. Reineck,
The connection matrix in Morse-Smale flows, Transactions of the American Mathematical Society, 322 (1990), 523-545.
doi: 10.1090/S0002-9947-1990-0972705-3. |
[13] |
C. McCord and J. F. Reineck,
Connection matrices and transition matrices, Banach Center Publications, 47 (1999), 41-55.
|
[14] |
D. S. Richeson,
Connection Matrix Pairs for the Discrete Conley Index Ph. D thesis, Northwesten University, 1998. |
[15] |
D. S. Richeson,
Connection matrix pairs, Banach Center Publications, 47 (1999), 219-232.
|
[16] |
J. W. Robbin and D. Salamon, Dynamical systems, shape theory and Conley index, Ergodic Theory & Dynamical Systems, 8* (1988), 375{393.
doi: 10.1017/S0143385700009494. |
[17] |
D. Salamon,
Connected simple systems and Conley index of isolated invariant sets, Transactions of the American Mathematical Society, 291 (1985), 1-41.
doi: 10.1090/S0002-9947-1985-0797044-3. |
[18] |
D. Salamon,
Morse Theory, Conley index and Floer homology, Bull. London Math. Soc., 22 (1990), 113-140.
doi: 10.1112/blms/22.2.113. |
[19] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 797-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[20] |
M. Shub and D. Sullivan,
Homology and dynamical systems, Topology, 14 (1975), 109-132.
doi: 10.1016/0040-9383(75)90022-1. |
[21] |
A. Szymczak,
The Conley index for discrete semidynamical systems, Topology and its Applications, 66 (1995), 215-240.
doi: 10.1016/0166-8641(95)0003J-S. |
show all references
References:
[1] |
P. Bartiomiejczyk and Z. Dzedzej,
Connection Matrix theory for discrete dynamical systems, Banach Center Publications, 47 (1999), 67-78.
|
[2] |
P. Blanchard and J. Franks,
An obstruction to the existence of certain dynamics in surface diffeomorphisms, Ergodic Theory & Dynamical Systems, 1 (1981), 255-260.
|
[3] |
R. Bowen,
Topological entropy and Axiom A, Proc. Sympos. Pure Math., 14 (1970), 23-41.
|
[4] |
R. Bowen and J. Franks,
Homology for zero-dimensional nonwandering sets, Annals of Mathematics, 106 (1977), 73-92.
doi: 10.2307/1971159. |
[5] |
C. Conley,
Isolated Invariant Sets and Morse Index CBMS Regional Conference Series in Mathematics, n. 38, American Mathematical Society, Providence, R. I. , 1978. |
[6] |
J. M. Franks,
Homology and Dynamical Systems, CBMS Regional Conference Series in Mathematics, n. 49, American Mathematical Society, Providence, R. I. , 1982. |
[7] |
J. M. Franks and D. S. Richeson,
Shift equivalence and the Conley Index, Transactions of the American Mathematical Society, 352 (2000), 3305-3322.
doi: 10.1090/S0002-9947-00-02488-0. |
[8] |
R. D. Franzosa,
Index filtrations and the homology index braid for partially ordered Morse decompositions, Transactions of the American Mathematical Society, 298 (1986), 193-213.
doi: 10.1090/S0002-9947-1986-0857439-7. |
[9] |
R. D. Franzosa,
The continuation theory for Morse decompositions and connection matrices, Transactions of the American Mathematical Society, 310 (1988), 781-803.
doi: 10.1090/S0002-9947-1988-0973177-6. |
[10] |
R. D. Franzosa,
The connection matrix theory for Morse decompositions, Transactions of the American Mathematical Society, 311 (1989), 561-592.
doi: 10.1090/S0002-9947-1989-0978368-7. |
[11] |
M. Mrozek,
Leray functor and cohomological Conley index for discrete dynamical systems, Transactions of the American Mathematical Society, 318 (1990), 149-178.
doi: 10.1090/S0002-9947-1990-0968888-1. |
[12] |
J. F. Reineck,
The connection matrix in Morse-Smale flows, Transactions of the American Mathematical Society, 322 (1990), 523-545.
doi: 10.1090/S0002-9947-1990-0972705-3. |
[13] |
C. McCord and J. F. Reineck,
Connection matrices and transition matrices, Banach Center Publications, 47 (1999), 41-55.
|
[14] |
D. S. Richeson,
Connection Matrix Pairs for the Discrete Conley Index Ph. D thesis, Northwesten University, 1998. |
[15] |
D. S. Richeson,
Connection matrix pairs, Banach Center Publications, 47 (1999), 219-232.
|
[16] |
J. W. Robbin and D. Salamon, Dynamical systems, shape theory and Conley index, Ergodic Theory & Dynamical Systems, 8* (1988), 375{393.
doi: 10.1017/S0143385700009494. |
[17] |
D. Salamon,
Connected simple systems and Conley index of isolated invariant sets, Transactions of the American Mathematical Society, 291 (1985), 1-41.
doi: 10.1090/S0002-9947-1985-0797044-3. |
[18] |
D. Salamon,
Morse Theory, Conley index and Floer homology, Bull. London Math. Soc., 22 (1990), 113-140.
doi: 10.1112/blms/22.2.113. |
[19] |
S. Smale,
Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 797-817.
doi: 10.1090/S0002-9904-1967-11798-1. |
[20] |
M. Shub and D. Sullivan,
Homology and dynamical systems, Topology, 14 (1975), 109-132.
doi: 10.1016/0040-9383(75)90022-1. |
[21] |
A. Szymczak,
The Conley index for discrete semidynamical systems, Topology and its Applications, 66 (1995), 215-240.
doi: 10.1016/0166-8641(95)0003J-S. |









[1] |
Todd Young. A result in global bifurcation theory using the Conley index. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 387-396. doi: 10.3934/dcds.1996.2.387 |
[2] |
Jintao Wang, Desheng Li, Jinqiao Duan. On the shape Conley index theory of semiflows on complete metric spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1629-1647. doi: 10.3934/dcds.2016.36.1629 |
[3] |
Giovanni Russo, Fabian Wirth. Matrix measures, stability and contraction theory for dynamical systems on time scales. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3345-3374. doi: 10.3934/dcdsb.2021188 |
[4] |
Robert Skiba, Nils Waterstraat. The index bundle and multiparameter bifurcation for discrete dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5603-5629. doi: 10.3934/dcds.2017243 |
[5] |
M. C. Carbinatto, K. Mischaikow. Horseshoes and the Conley index spectrum - II: the theorem is sharp. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 599-616. doi: 10.3934/dcds.1999.5.599 |
[6] |
Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure and Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75 |
[7] |
Kung-Ching Chang, Zhi-Qiang Wang, Tan Zhang. On a new index theory and non semi-trivial solutions for elliptic systems. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 809-826. doi: 10.3934/dcds.2010.28.809 |
[8] |
Hahng-Yun Chu, Se-Hyun Ku, Jong-Suh Park. Conley's theorem for dispersive systems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 313-321. doi: 10.3934/dcdss.2015.8.313 |
[9] |
Marian Gidea. Leray functor and orbital Conley index for non-invariant sets. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 617-630. doi: 10.3934/dcds.1999.5.617 |
[10] |
Anna Go??biewska, S?awomir Rybicki. Equivariant Conley index versus degree for equivariant gradient maps. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 985-997. doi: 10.3934/dcdss.2013.6.985 |
[11] |
Carlos Matheus, Jean-Christophe Yoccoz. The action of the affine diffeomorphisms on the relative homology group of certain exceptionally symmetric origamis. Journal of Modern Dynamics, 2010, 4 (3) : 453-486. doi: 10.3934/jmd.2010.4.453 |
[12] |
Kazuyuki Yagasaki. Optimal control of the SIR epidemic model based on dynamical systems theory. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2501-2513. doi: 10.3934/dcdsb.2021144 |
[13] |
Andrea Braides, Margherita Solci, Enrico Vitali. A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2 (3) : 551-567. doi: 10.3934/nhm.2007.2.551 |
[14] |
Simone Fiori. Auto-regressive moving-average discrete-time dynamical systems and autocorrelation functions on real-valued Riemannian matrix manifolds. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2785-2808. doi: 10.3934/dcdsb.2014.19.2785 |
[15] |
Ugo Locatelli, Letizia Stefanelli. Quasi-periodic motions in a special class of dynamical equations with dissipative effects: A pair of detection methods. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1155-1187. doi: 10.3934/dcdsb.2015.20.1155 |
[16] |
Michael Ghil. The wind-driven ocean circulation: Applying dynamical systems theory to a climate problem. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 189-228. doi: 10.3934/dcds.2017008 |
[17] |
Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synchronization of dynamical systems on Riemannian manifolds by an extended PID-type control theory: Numerical evaluation. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022047 |
[18] |
Rúben Sousa, Semyon Yakubovich. The spectral expansion approach to index transforms and connections with the theory of diffusion processes. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2351-2378. doi: 10.3934/cpaa.2018112 |
[19] |
J. G. Ollason, N. Ren. A general dynamical theory of foraging in animals. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 713-720. doi: 10.3934/dcdsb.2004.4.713 |
[20] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]