-
Previous Article
Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation
- DCDS Home
- This Issue
-
Next Article
Multiple periodic solutions of Hamiltonian systems confined in a box
Homogenization of second order discrete model with local perturbation and application to traffic flow
Normandie Univ, INSA de Rouen Normandie, LMI (EA 3226 -FR CNRS 3335), 76000 Rouen, France, 685 Avenue de l'Université, 76801 St Etienne du Rouvray cedex, France |
The goal of this paper is to derive a traffic flow macroscopic model from a second order microscopic model with a local perturbation. At the microscopic scale, we consider a Bando model of the type following the leader, i.e the acceleration of each vehicle depends on the distance of the vehicle in front of it. We consider also a local perturbation like an accident at the roadside that slows down the vehicles. After rescaling, we prove that the "cumulative distribution functions" of the vehicles converges towards the solution of a macroscopic homogenized Hamilton-Jacobi equation with a flux limiting condition at junction which can be seen as a LWR (Lighthill-Whitham-Richards) model.
References:
[1] |
Y. Achdou and N. Tchou,
Hamilton-jacobi equations on networks as limits of singularly perturbed problems in optimal control: Dimension reduction, Communications in Partial Differential Equations, 40 (2015), 652-693.
doi: 10.1080/03605302.2014.974764. |
[2] |
O. Alvarez and A. Tourin,
Viscosity solutions of nonlinear integro-differential equations, Annales de l'Institut Henri Poincaré. Analyse non linéaire, 13 (1996), 293-317.
doi: 10.1016/j.anihpc.2007.02.007. |
[3] |
A. Aw, A. Klar, M. Rascle and T. Materne,
Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278.
doi: 10.1137/S0036139900380955. |
[4] |
M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation Physical Review E 51 (1995), p1035.
doi: 10.1103/PhysRevE.51.1035. |
[5] |
G. Barles,
Solutions de Viscosité des Équations de Hamilton-Jacobi Springer Verlag, 1994. |
[6] |
M. G. Crandall, H. Ishii and P.-L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[7] |
F. Da Lio, N. Forcadel and R. Monneau,
Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocation dynamics, J. Eur. Math. Soc. (JEMS), 10 (2008), 1061-1104.
doi: 10.4171/JEMS/140. |
[8] |
M. Di Francesco and M. D. Rosini,
Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871.
doi: 10.1007/s00205-015-0843-4. |
[9] |
N. Forcadel, C. Imbert and R. Monneau,
Homogenization of fully overdamped frenkel-kontorova models, Journal of Differential Equations, 246 (2009), 1057-1097.
doi: 10.1016/j.jde.2008.06.034. |
[10] |
N. Forcadel, C. Imbert and R. Monneau,
Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete Contin. Dyn. Syst., 23 (2009), 785-826.
doi: 10.3934/dcds.2009.23.785. |
[11] |
N. Forcadel, C. Imbert and R. Monneau,
Homogenization of accelerated frenkel-kontorova models with n types of particles, Transactions of the American Mathematical Society, 364 (2012), 6187-6227.
doi: 10.1090/S0002-9947-2012-05650-9. |
[12] |
N. Forcadel and W. Salazar,
Homogenization of second order discrete model and application to traffic flow, Differential and Integral Equations, 28 (2015), 1039-1068.
|
[13] |
N. Forcadel and W. Salazar, A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow, preprint, hal-01097085. |
[14] |
G. Galise, C. Imbert and R. Monneau,
A junction condition by specified homogenization and application to traffic lights, Anal. PDE, 8 (2015), 1891-1929.
doi: 10.2140/apde.2015.8.1891. |
[15] |
J. M. Greenberg,
Extensions and amplifications of a traffic model of Aw and Rascale, SIAM J. Appl. Math., 62 (2001), 729-745.
doi: 10.1137/S0036139900378657. |
[16] |
D. Helbing, From microscopic to macroscopic traffic models, in A Perspective Look at Nonlinear Media, Lecture Notes in Phys. , 503, Springer, Berlin, 1998,122–139.
doi: 10.1007/BFb0104959. |
[17] |
C. Imbert,
A non-local regularization of first order Hamilton--Jacobi equations, Journal of Differential Equations, 211 (2005), 218-246.
doi: 10.1016/j.jde.2004.06.001. |
[18] |
M. Herty and L. Pareschi,
Fokker-Planck asymptotics for traffic flow models, Kinet. Relat. Models, 3 (2010), 165-179.
doi: 10.3934/krm.2010.3.165. |
[19] |
C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks, arXiv: 1306.2428. |
[20] |
C. Imbert, R. Monneau and E. Rouy,
Homogenization of first order equations with (u/$\varepsilon$)-periodic hamiltonians part ⅱ: Application to dislocations dynamics, Communications in Partial Differential Equations, 33 (2008), 479-516.
doi: 10.1080/03605300701318922. |
[21] |
H. Ishii and S. Koike,
Viscosity solutions for monotone systems of second--order elliptic pdes, Communications in Partial Differential Equations, 16 (1991), 1095-1128.
doi: 10.1080/03605309108820791. |
[22] |
W. Knödel,
Graphentheoretische {M}ethoden und Ihre {A}nwendungen Econometrics and Operations Research, ⅩⅢ, Springer-Verlag, Berlin-New York, 1969.
doi: 10.1007/978-3-642-95121-3. |
[23] |
H. Lee, H. -W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models Physical Review E 64 (2001), 056126.
doi: 10.1103/PhysRevE.64.056126. |
[24] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. ⅱ. a theory of traffic flow on long crowded roadss, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229 (1995), 317-345.
doi: 10.1098/rspa.1955.0089. |
[25] | |
[26] |
P. I. Richards,
Shock waves on the highway, Operations Research, 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
show all references
References:
[1] |
Y. Achdou and N. Tchou,
Hamilton-jacobi equations on networks as limits of singularly perturbed problems in optimal control: Dimension reduction, Communications in Partial Differential Equations, 40 (2015), 652-693.
doi: 10.1080/03605302.2014.974764. |
[2] |
O. Alvarez and A. Tourin,
Viscosity solutions of nonlinear integro-differential equations, Annales de l'Institut Henri Poincaré. Analyse non linéaire, 13 (1996), 293-317.
doi: 10.1016/j.anihpc.2007.02.007. |
[3] |
A. Aw, A. Klar, M. Rascle and T. Materne,
Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278.
doi: 10.1137/S0036139900380955. |
[4] |
M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation Physical Review E 51 (1995), p1035.
doi: 10.1103/PhysRevE.51.1035. |
[5] |
G. Barles,
Solutions de Viscosité des Équations de Hamilton-Jacobi Springer Verlag, 1994. |
[6] |
M. G. Crandall, H. Ishii and P.-L. Lions,
User's guide to viscosity solutions of second order partial differential equations, Bulletin of the American Mathematical Society, 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[7] |
F. Da Lio, N. Forcadel and R. Monneau,
Convergence of a non-local eikonal equation to anisotropic mean curvature motion. Application to dislocation dynamics, J. Eur. Math. Soc. (JEMS), 10 (2008), 1061-1104.
doi: 10.4171/JEMS/140. |
[8] |
M. Di Francesco and M. D. Rosini,
Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871.
doi: 10.1007/s00205-015-0843-4. |
[9] |
N. Forcadel, C. Imbert and R. Monneau,
Homogenization of fully overdamped frenkel-kontorova models, Journal of Differential Equations, 246 (2009), 1057-1097.
doi: 10.1016/j.jde.2008.06.034. |
[10] |
N. Forcadel, C. Imbert and R. Monneau,
Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete Contin. Dyn. Syst., 23 (2009), 785-826.
doi: 10.3934/dcds.2009.23.785. |
[11] |
N. Forcadel, C. Imbert and R. Monneau,
Homogenization of accelerated frenkel-kontorova models with n types of particles, Transactions of the American Mathematical Society, 364 (2012), 6187-6227.
doi: 10.1090/S0002-9947-2012-05650-9. |
[12] |
N. Forcadel and W. Salazar,
Homogenization of second order discrete model and application to traffic flow, Differential and Integral Equations, 28 (2015), 1039-1068.
|
[13] |
N. Forcadel and W. Salazar, A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow, preprint, hal-01097085. |
[14] |
G. Galise, C. Imbert and R. Monneau,
A junction condition by specified homogenization and application to traffic lights, Anal. PDE, 8 (2015), 1891-1929.
doi: 10.2140/apde.2015.8.1891. |
[15] |
J. M. Greenberg,
Extensions and amplifications of a traffic model of Aw and Rascale, SIAM J. Appl. Math., 62 (2001), 729-745.
doi: 10.1137/S0036139900378657. |
[16] |
D. Helbing, From microscopic to macroscopic traffic models, in A Perspective Look at Nonlinear Media, Lecture Notes in Phys. , 503, Springer, Berlin, 1998,122–139.
doi: 10.1007/BFb0104959. |
[17] |
C. Imbert,
A non-local regularization of first order Hamilton--Jacobi equations, Journal of Differential Equations, 211 (2005), 218-246.
doi: 10.1016/j.jde.2004.06.001. |
[18] |
M. Herty and L. Pareschi,
Fokker-Planck asymptotics for traffic flow models, Kinet. Relat. Models, 3 (2010), 165-179.
doi: 10.3934/krm.2010.3.165. |
[19] |
C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex hamilton-jacobi equations on networks, arXiv: 1306.2428. |
[20] |
C. Imbert, R. Monneau and E. Rouy,
Homogenization of first order equations with (u/$\varepsilon$)-periodic hamiltonians part ⅱ: Application to dislocations dynamics, Communications in Partial Differential Equations, 33 (2008), 479-516.
doi: 10.1080/03605300701318922. |
[21] |
H. Ishii and S. Koike,
Viscosity solutions for monotone systems of second--order elliptic pdes, Communications in Partial Differential Equations, 16 (1991), 1095-1128.
doi: 10.1080/03605309108820791. |
[22] |
W. Knödel,
Graphentheoretische {M}ethoden und Ihre {A}nwendungen Econometrics and Operations Research, ⅩⅢ, Springer-Verlag, Berlin-New York, 1969.
doi: 10.1007/978-3-642-95121-3. |
[23] |
H. Lee, H. -W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models Physical Review E 64 (2001), 056126.
doi: 10.1103/PhysRevE.64.056126. |
[24] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. ⅱ. a theory of traffic flow on long crowded roadss, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229 (1995), 317-345.
doi: 10.1098/rspa.1955.0089. |
[25] | |
[26] |
P. I. Richards,
Shock waves on the highway, Operations Research, 4 (1956), 42-51.
doi: 10.1287/opre.4.1.42. |
[1] |
Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389 |
[2] |
Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure and Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793 |
[3] |
Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649 |
[4] |
Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461 |
[5] |
Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677 |
[6] |
Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176 |
[7] |
Gabriella Puppo, Matteo Semplice, Andrea Tosin, Giuseppe Visconti. Kinetic models for traffic flow resulting in a reduced space of microscopic velocities. Kinetic and Related Models, 2017, 10 (3) : 823-854. doi: 10.3934/krm.2017033 |
[8] |
Matteo Piu, Gabriella Puppo. Stability analysis of microscopic models for traffic flow with lane changing. Networks and Heterogeneous Media, 2022 doi: 10.3934/nhm.2022006 |
[9] |
Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064 |
[10] |
Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic and Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311 |
[11] |
Paola Goatin, Elena Rossi. Comparative study of macroscopic traffic flow models at road junctions. Networks and Heterogeneous Media, 2020, 15 (2) : 261-279. doi: 10.3934/nhm.2020012 |
[12] |
Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385 |
[13] |
Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647 |
[14] |
Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167 |
[15] |
David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205 |
[16] |
Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057 |
[17] |
Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529 |
[18] |
Eddaly Guerra, Héctor Sánchez-Morgado. Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2014, 13 (1) : 331-346. doi: 10.3934/cpaa.2014.13.331 |
[19] |
Guillaume Costeseque, Jean-Patrick Lebacque. Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 411-433. doi: 10.3934/dcdss.2014.7.411 |
[20] |
Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]