# American Institute of Mathematical Sciences

• Previous Article
On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators
• DCDS Home
• This Issue
• Next Article
Homogenization of second order discrete model with local perturbation and application to traffic flow
March  2017, 37(3): 1489-1507. doi: 10.3934/dcds.2017061

## Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation

 Sorbonnes Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis, Lions F-75005, Paris, France

Received  October 2015 Revised  October 2016 Published  December 2016

Fund Project: LG is supported by FQRNT and by ERC advanced grant 266907 (CPDENL) of the 7th Research Framework Programme (FP7).

The qualitative properties of the particle trajectories of the $N$-solitons solution of the KdV equation are recovered from the first order velocity field by the introduction of the stream function. Numerical simulations show an accurate depth dependance of the particles trajectories for solitary waves. Failure of the free surface kinematic boundary condition for the first order type velocity field is highlighted.

Citation: Ludovick Gagnon. Qualitative description of the particle trajectories for the N-solitons solution of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1489-1507. doi: 10.3934/dcds.2017061
##### References:

show all references

##### References:
A soliton solution of (1) represented in the Cartesian coordinates.
The orbits of water particles obtained from the experimental measurements of the polystyrene beads motions at different water levels $b$ in the four experimental wave cases (a) $h_0$=20cm, $a$=7.07cm; (b) $h_0$=20cm, $a$=8.56cm; (c) $h_0$=30cm, $a$=5.46cm; (d) $h_0$=30cm, $a$=7.56cm.
Interaction between two solitons. The cross (resp. circle) represents the position of the maximum of the faster (resp. slower) soliton if no interaction would have occured. Figure a) is the state of the $2$-solitons solution before the interaction and b) is the state after the interaction. The frame is fixed at the speed of the slower soliton.
Comparison of the numerical approximation of the particle trajectories for the first order velocity field (top left) and the higher order velocity field (top right). Zoom on the end of the particle trajectories for the first order velocity field (bottom left) and the higher order velocity field (bottom right). The depth of the fluid is 30 cm and the height of the solitary wave is 5.46 cm. The dashed line represents the undisturbed water surface.
Total displacement ($X$) in the x variable and maximal displacement ($Y$) in the y variable with respect to the initial vertical position above the flat bottom of the particle $b$ for the first order velocity field ($1^{st}$), the higher velocity field (Hi.) and the experimental results (Exp.).
Numerical approximation of the particle trajectories for the 2-solitons solution. The particles trajectories are in black, the initial position of the 2-solitons is in dashed black and the final position is in gray. The height of the soliton in front is 0.4cm and the soliton behind is 0.3cm. The depth of the water is 1cm.
 [1] Eduardo Cerpa. Control of a Korteweg-de Vries equation: A tutorial. Mathematical Control & Related Fields, 2014, 4 (1) : 45-99. doi: 10.3934/mcrf.2014.4.45 [2] M. Agrotis, S. Lafortune, P.G. Kevrekidis. On a discrete version of the Korteweg-De Vries equation. Conference Publications, 2005, 2005 (Special) : 22-29. doi: 10.3934/proc.2005.2005.22 [3] Anne de Bouard, Eric Gautier. Exit problems related to the persistence of solitons for the Korteweg-de Vries equation with small noise. Discrete & Continuous Dynamical Systems, 2010, 26 (3) : 857-871. doi: 10.3934/dcds.2010.26.857 [4] Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255 [5] Muhammad Usman, Bing-Yu Zhang. Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1509-1523. doi: 10.3934/dcds.2010.26.1509 [6] Eduardo Cerpa, Emmanuelle Crépeau. Rapid exponential stabilization for a linear Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 655-668. doi: 10.3934/dcdsb.2009.11.655 [7] Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069 [8] Ahmat Mahamat Taboye, Mohamed Laabissi. Exponential stabilization of a linear Korteweg-de Vries equation with input saturation. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021052 [9] Zhaosheng Feng, Yu Huang. Approximate solution of the Burgers-Korteweg-de Vries equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 429-440. doi: 10.3934/cpaa.2007.6.429 [10] Eduardo Cerpa, Emmanuelle Crépeau, Julie Valein. Boundary controllability of the Korteweg-de Vries equation on a tree-shaped network. Evolution Equations & Control Theory, 2020, 9 (3) : 673-692. doi: 10.3934/eect.2020028 [11] Arnaud Debussche, Jacques Printems. Convergence of a semi-discrete scheme for the stochastic Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 761-781. doi: 10.3934/dcdsb.2006.6.761 [12] Roberto A. Capistrano-Filho, Shuming Sun, Bing-Yu Zhang. General boundary value problems of the Korteweg-de Vries equation on a bounded domain. Mathematical Control & Related Fields, 2018, 8 (3&4) : 583-605. doi: 10.3934/mcrf.2018024 [13] Qifan Li. Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1097-1109. doi: 10.3934/cpaa.2012.11.1097 [14] Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure & Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046 [15] John P. Albert. A uniqueness result for 2-soliton solutions of the Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3635-3670. doi: 10.3934/dcds.2019149 [16] Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 [17] Mostafa Abounouh, Hassan Al-Moatassime, Sabah Kaouri. Non-standard boundary conditions for the linearized Korteweg-de Vries equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2625-2654. doi: 10.3934/dcdss.2021066 [18] Julie Valein. On the asymptotic stability of the Korteweg-de Vries equation with time-delayed internal feedback. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021039 [19] Ivonne Rivas, Muhammad Usman, Bing-Yu Zhang. Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-De Vries equation on a finite domain. Mathematical Control & Related Fields, 2011, 1 (1) : 61-81. doi: 10.3934/mcrf.2011.1.61 [20] Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control & Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353

2020 Impact Factor: 1.392