-
Previous Article
Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth
- DCDS Home
- This Issue
-
Next Article
On the Cauchy problem for a generalized two-component shallow water wave system with fractional higher-order inertia operators
Effect of cross-diffusion in the diffusion prey-predator model with a protection zone
1. | School of Mathematics and Statistics, Xidian University, Xi'an, Shaanxi 710071, China |
2. | College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China |
In this work, we continue the mathematical study started in [K. Oeda, J. Differential Equations 250 (2011) 3988-4009] on the analytic aspects of the diffusion prey-predator system with a protection zone and cross-diffusion. For small birth rates of two species and large cross-diffusion for the prey, the detailed structure of positive solutions is established by the bifurcation theory and the Lyapunov-Schmidt reduction, which is determined by a finite dimensional limiting system. Moreover, we prove that the stability of positive solutions changes only at every turning point by a spectral analysis for the linearized eigenvalue problem of the limiting system and its perturbation.
References:
[1] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[2] |
Y. H. Du and Y. Lou,
S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equations, 144 (1998), 390-440.
doi: 10.1006/jdeq.1997.3394. |
[3] |
Y. H. Du and J. P. Shi,
A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.
doi: 10.1016/j.jde.2006.01.013. |
[4] |
Y. H. Du and X. Liang,
A diffusive competition model with a protection zone, J. Differential Equations, 244 (2008), 61-86.
doi: 10.1016/j.jde.2007.10.005. |
[5] |
Y. H. Du, R. Peng and M. X. Wang,
Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.
doi: 10.1016/j.jde.2008.11.007. |
[6] |
X. He and S. N. Zheng,
Protection zone in a modified Lotka-Volterra model, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2027-2038.
doi: 10.3934/dcdsb.2015.20.2027. |
[7] |
X. He and S. N. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response, preprint, arXiv: 1505.06625. |
[8] |
T. Kato,
Perturbation Theory for Linear Operators, Springer, Berlin, New York, 1966. |
[9] |
K. Kuto and Y. Yamada,
Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348.
doi: 10.1016/j.jde.2003.08.003. |
[10] |
K. Kuto,
Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 10 (2009), 943-965.
doi: 10.1016/j.nonrwa.2007.11.015. |
[11] |
K. Kuto,
Stability and Hopf bifurcation of steady-state solutions to an SKT model in a spatially heterogeneous environment, Discrete Contin. Dynam. Syst., 24 (2009), 489-509.
doi: 10.3934/dcds.2009.24.489. |
[12] |
S. B. Li, J. H. Wu, S. Y. Liu and Y. Y. Dong, Effects of cross-diffusion and protection zone in the Leslie-Gower predator-prey model, submitted. |
[13] |
J. López-Gómez,
Spectral Theory and Nonlinear Functional Analysis. Research Notes in Mathematics vol. 426, CRC Press, Boca Raton, FL, 2001.
doi: 10.1201/9781420035506. |
[14] |
K. Oeda,
Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations, 250 (2011), 3988-4009.
doi: 10.1016/j.jde.2011.01.026. |
[15] |
K. Oeda,
Coexistence states of a prey-predator model with cross-diffusion and a protection zone, Adv. Math. Sci. Appl., 22 (2012), 501-520.
|
[16] |
N. Shigesada, K. Kawasaki and E. Teramoto,
Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99.
doi: 10.1016/0022-5193(79)90258-3. |
[17] |
Y. X. Wang and W. T. Li,
Effects of cross-diffusion and heterogeneous environment on positive steady states of a prey-predator system, Nonlinear Anal. Real World Appl., 14 (2013), 1235-1246.
doi: 10.1016/j.nonrwa.2012.09.015. |
[18] |
Y. X. Wang and W. T. Li,
Effects of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone, Nonlinear Anal. Real World Appl., 14 (2013), 224-245.
doi: 10.1016/j.nonrwa.2012.06.001. |
[19] |
Q. X. Ye and Z. Y. Li,
Introduction to Reaction-Diffusion Equations (in Chinese), Beijing: Science Press, 1990. |
show all references
References:
[1] |
M. G. Crandall and P. H. Rabinowitz,
Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2. |
[2] |
Y. H. Du and Y. Lou,
S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equations, 144 (1998), 390-440.
doi: 10.1006/jdeq.1997.3394. |
[3] |
Y. H. Du and J. P. Shi,
A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.
doi: 10.1016/j.jde.2006.01.013. |
[4] |
Y. H. Du and X. Liang,
A diffusive competition model with a protection zone, J. Differential Equations, 244 (2008), 61-86.
doi: 10.1016/j.jde.2007.10.005. |
[5] |
Y. H. Du, R. Peng and M. X. Wang,
Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.
doi: 10.1016/j.jde.2008.11.007. |
[6] |
X. He and S. N. Zheng,
Protection zone in a modified Lotka-Volterra model, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 2027-2038.
doi: 10.3934/dcdsb.2015.20.2027. |
[7] |
X. He and S. N. Zheng, Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response, preprint, arXiv: 1505.06625. |
[8] |
T. Kato,
Perturbation Theory for Linear Operators, Springer, Berlin, New York, 1966. |
[9] |
K. Kuto and Y. Yamada,
Multiple coexistence states for a prey-predator system with cross-diffusion, J. Differential Equations, 197 (2004), 315-348.
doi: 10.1016/j.jde.2003.08.003. |
[10] |
K. Kuto,
Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 10 (2009), 943-965.
doi: 10.1016/j.nonrwa.2007.11.015. |
[11] |
K. Kuto,
Stability and Hopf bifurcation of steady-state solutions to an SKT model in a spatially heterogeneous environment, Discrete Contin. Dynam. Syst., 24 (2009), 489-509.
doi: 10.3934/dcds.2009.24.489. |
[12] |
S. B. Li, J. H. Wu, S. Y. Liu and Y. Y. Dong, Effects of cross-diffusion and protection zone in the Leslie-Gower predator-prey model, submitted. |
[13] |
J. López-Gómez,
Spectral Theory and Nonlinear Functional Analysis. Research Notes in Mathematics vol. 426, CRC Press, Boca Raton, FL, 2001.
doi: 10.1201/9781420035506. |
[14] |
K. Oeda,
Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations, 250 (2011), 3988-4009.
doi: 10.1016/j.jde.2011.01.026. |
[15] |
K. Oeda,
Coexistence states of a prey-predator model with cross-diffusion and a protection zone, Adv. Math. Sci. Appl., 22 (2012), 501-520.
|
[16] |
N. Shigesada, K. Kawasaki and E. Teramoto,
Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83-99.
doi: 10.1016/0022-5193(79)90258-3. |
[17] |
Y. X. Wang and W. T. Li,
Effects of cross-diffusion and heterogeneous environment on positive steady states of a prey-predator system, Nonlinear Anal. Real World Appl., 14 (2013), 1235-1246.
doi: 10.1016/j.nonrwa.2012.09.015. |
[18] |
Y. X. Wang and W. T. Li,
Effects of cross-diffusion on the stationary problem of a diffusive competition model with a protection zone, Nonlinear Anal. Real World Appl., 14 (2013), 224-245.
doi: 10.1016/j.nonrwa.2012.06.001. |
[19] |
Q. X. Ye and Z. Y. Li,
Introduction to Reaction-Diffusion Equations (in Chinese), Beijing: Science Press, 1990. |
[1] |
Heinz Schättler, Urszula Ledzewicz. Lyapunov-Schmidt reduction for optimal control problems. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 2201-2223. doi: 10.3934/dcdsb.2012.17.2201 |
[2] |
Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597 |
[3] |
Christian Pötzsche. Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 739-776. doi: 10.3934/dcdsb.2010.14.739 |
[4] |
Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133 |
[5] |
Robert Stephen Cantrell, Xinru Cao, King-Yeung Lam, Tian Xiang. A PDE model of intraguild predation with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3653-3661. doi: 10.3934/dcdsb.2017145 |
[6] |
Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193 |
[7] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589 |
[8] |
Michael Winkler, Dariusz Wrzosek. Preface: Analysis of cross-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : i-i. doi: 10.3934/dcdss.20202i |
[9] |
Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021, 8 (2) : 213-240. doi: 10.3934/jcd.2021010 |
[10] |
Yaru Hu, Jinfeng Wang. Dynamics of an SIRS epidemic model with cross-diffusion. Communications on Pure and Applied Analysis, 2022, 21 (1) : 315-336. doi: 10.3934/cpaa.2021179 |
[11] |
Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147 |
[12] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[13] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435 |
[14] |
Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536 |
[15] |
Kousuke Kuto, Yoshio Yamada. On limit systems for some population models with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2745-2769. doi: 10.3934/dcdsb.2012.17.2745 |
[16] |
Daniel Ryan, Robert Stephen Cantrell. Avoidance behavior in intraguild predation communities: A cross-diffusion model. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1641-1663. doi: 10.3934/dcds.2015.35.1641 |
[17] |
Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185 |
[18] |
F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev. "Traveling wave'' solutions of Fitzhugh model with cross-diffusion. Mathematical Biosciences & Engineering, 2008, 5 (2) : 239-260. doi: 10.3934/mbe.2008.5.239 |
[19] |
Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198 |
[20] |
Hongfei Xu, Jinfeng Wang, Xuelian Xu. Dynamics and pattern formation in a cross-diffusion model with stage structure for predators. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021237 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]