-
Previous Article
Nonlocal Schrödinger-Kirchhoff equations with external magnetic field
- DCDS Home
- This Issue
-
Next Article
On an $N$-Component Camassa-Holm equation with peakons
Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions
Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo 153-8914, Japan |
We prove the existence of solutions of degenerate parabolic-parabolic Keller-Segel system with no-flux and Neumann boundary conditions for each variable respectively, under the assumption that the total mass of the first variable is below a certain constant. The proof relies on the interpretation of the system as a gradient flow in the product space of the Wasserstein space and the standard $L^2$-space. More precisely, we apply the ''minimizing movement'' scheme and show a certain critical mass appears in the application of this scheme to our problem.
References:
[1] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000. |
[2] |
L. Ambrosio, N. Gigli and G. Savaré,
Gradient Flows in Metric Spaces and in the Space of Probability Measures Lectures in Mathematics, Birkhäuser, 2005. |
[3] |
L. Ambrosio and G. Savaré, Gradient flows of probability measures, Handbook of differential
equations: Evolutionary equations, Handb. Differ. Equ. , Elsevier/North-Holland, Amsterdam, Ⅲ (2007), 1–136. |
[4] |
J. Bedrossian, N. Rodríguez and A. Bertozzi,
Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, 24 (2011), 1683-1714.
|
[5] |
P. Biler,
Local and global solvability of some parabolic systems modelling chemotaxis, Adv.
Math. Sci. Appl., 8 (1998), 715-743.
|
[6] |
A. Blanchet, J. A. Carrillo and Ph. Laurençot,
Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.
|
[7] |
A. Blanchet, J. Dolbeault and B. Perthame,
Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions,
Electron. J. Differential Equations 44 (2006), 32 pp. (electronic). |
[8] |
A. Blanchet and Ph. Laurençcot,
The Parabolic-Parabolic Keller-Segel System with Critical Diffusion as a Gradient Flow in $\mathbb{R}^d, d ≥q 3$, Comm. Partial Differential Equations, 38 (2013), 658-686.
|
[9] |
V. Calvez and L. Corrias,
The parabolic-parabolic Keller-Segel model in $\mathbb{R}^2$, Commun. Math.
Sci., 6 (2008), 417-447.
|
[10] |
H. Gajewski and K. Zacharias,
Global behavior of a reaction-diffusion system modeling chemotaxis, Math. Nachr., 195 (1998), 77-114.
|
[11] |
M. A. Herrero and J. J. L. Velázquez,
Chemotaxis collapse for Keller-Segel model, J. Math.
Biol., 35 (1996), 177-194.
|
[12] |
M. A. Herrero and J. J. L. Velázquez,
Singularity patterns in a chemotaxis model, Math.
Ann., 306 (1996), 583-623.
|
[13] |
S. Ishida and T. Yokota,
Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596.
|
[14] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J.
Theor. Biol., 26 (1970), 399-415.
|
[15] |
D. Matthes, R. J. McCann and G. Savarß,
A family of nonlinear fourth order equations of gradient flow type, Comm. Part. Diff. Eqs., 34 (2009), 1352-1397.
|
[16] |
N. Mizoguchi,
Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane, Calc. Var. Partial Differential Equations, 48 (2013), 491-505.
|
[17] |
T. Nagai, T. Senba and K. Yoshida,
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.
|
[18] |
F. Otto, Doubly degenerate diffusion equations as steepest descent, Manuscript, 1996. |
[19] |
T. Suzuki and R. Takahashi,
Degenerate parabolic equation with critical exponent derived from the kinetic theory, Ⅱ. Blowup threshold, Differential Integral Equations, 22 (2009), 1153-1172.
|
[20] |
M. Taylor,
Partial Differential Equations I Springer New York, 1996. |
[21] |
C. Villani,
Topics in Optimal Transportation Graduate Studies in Mathematics 58, American Mathematical Society, Providence, RI, 2003. |
show all references
References:
[1] |
L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000. |
[2] |
L. Ambrosio, N. Gigli and G. Savaré,
Gradient Flows in Metric Spaces and in the Space of Probability Measures Lectures in Mathematics, Birkhäuser, 2005. |
[3] |
L. Ambrosio and G. Savaré, Gradient flows of probability measures, Handbook of differential
equations: Evolutionary equations, Handb. Differ. Equ. , Elsevier/North-Holland, Amsterdam, Ⅲ (2007), 1–136. |
[4] |
J. Bedrossian, N. Rodríguez and A. Bertozzi,
Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, 24 (2011), 1683-1714.
|
[5] |
P. Biler,
Local and global solvability of some parabolic systems modelling chemotaxis, Adv.
Math. Sci. Appl., 8 (1998), 715-743.
|
[6] |
A. Blanchet, J. A. Carrillo and Ph. Laurençot,
Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), 133-168.
|
[7] |
A. Blanchet, J. Dolbeault and B. Perthame,
Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions,
Electron. J. Differential Equations 44 (2006), 32 pp. (electronic). |
[8] |
A. Blanchet and Ph. Laurençcot,
The Parabolic-Parabolic Keller-Segel System with Critical Diffusion as a Gradient Flow in $\mathbb{R}^d, d ≥q 3$, Comm. Partial Differential Equations, 38 (2013), 658-686.
|
[9] |
V. Calvez and L. Corrias,
The parabolic-parabolic Keller-Segel model in $\mathbb{R}^2$, Commun. Math.
Sci., 6 (2008), 417-447.
|
[10] |
H. Gajewski and K. Zacharias,
Global behavior of a reaction-diffusion system modeling chemotaxis, Math. Nachr., 195 (1998), 77-114.
|
[11] |
M. A. Herrero and J. J. L. Velázquez,
Chemotaxis collapse for Keller-Segel model, J. Math.
Biol., 35 (1996), 177-194.
|
[12] |
M. A. Herrero and J. J. L. Velázquez,
Singularity patterns in a chemotaxis model, Math.
Ann., 306 (1996), 583-623.
|
[13] |
S. Ishida and T. Yokota,
Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569-2596.
|
[14] |
E. F. Keller and L. A. Segel,
Initiation of slime mold aggregation viewed as an instability, J.
Theor. Biol., 26 (1970), 399-415.
|
[15] |
D. Matthes, R. J. McCann and G. Savarß,
A family of nonlinear fourth order equations of gradient flow type, Comm. Part. Diff. Eqs., 34 (2009), 1352-1397.
|
[16] |
N. Mizoguchi,
Global existence for the Cauchy problem of the parabolic-parabolic Keller-Segel system on the plane, Calc. Var. Partial Differential Equations, 48 (2013), 491-505.
|
[17] |
T. Nagai, T. Senba and K. Yoshida,
Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.
|
[18] |
F. Otto, Doubly degenerate diffusion equations as steepest descent, Manuscript, 1996. |
[19] |
T. Suzuki and R. Takahashi,
Degenerate parabolic equation with critical exponent derived from the kinetic theory, Ⅱ. Blowup threshold, Differential Integral Equations, 22 (2009), 1153-1172.
|
[20] |
M. Taylor,
Partial Differential Equations I Springer New York, 1996. |
[21] |
C. Villani,
Topics in Optimal Transportation Graduate Studies in Mathematics 58, American Mathematical Society, Providence, RI, 2003. |
[1] |
Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181 |
[2] |
Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic and Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012 |
[3] |
Sachiko Ishida, Yusuke Maeda, Tomomi Yokota. Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbb{R}^N$. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2537-2568. doi: 10.3934/dcdsb.2013.18.2537 |
[4] |
Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231 |
[5] |
Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046 |
[6] |
Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216 |
[7] |
Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure and Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339 |
[8] |
Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79 |
[9] |
Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure and Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287 |
[10] |
Federica Bubba, Benoit Perthame, Daniele Cerroni, Pasquale Ciarletta, Paolo Zunino. A coupled 3D-1D multiscale Keller-Segel model of chemotaxis and its application to cancer invasion. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2053-2086. doi: 10.3934/dcdss.2022044 |
[11] |
Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345 |
[12] |
Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569 |
[13] |
Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335 |
[14] |
Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015 |
[15] |
Shen Bian, Jian-Guo Liu, Chen Zou. Ultra-contractivity for Keller-Segel model with diffusion exponent $m>1-2/d$. Kinetic and Related Models, 2014, 7 (1) : 9-28. doi: 10.3934/krm.2014.7.9 |
[16] |
Hui Huang, Jian-Guo Liu. Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3463-3478. doi: 10.3934/dcdsb.2016107 |
[17] |
J. Ignacio Tello. Radially symmetric solutions for a Keller-Segel system with flux limitation and nonlinear diffusion. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022045 |
[18] |
Yadong Shang, Jianjun Paul Tian, Bixiang Wang. Asymptotic behavior of the stochastic Keller-Segel equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1367-1391. doi: 10.3934/dcdsb.2019020 |
[19] |
Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179 |
[20] |
José Antonio Carrillo, Stefano Lisini, Edoardo Mainini. Uniqueness for Keller-Segel-type chemotaxis models. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1319-1338. doi: 10.3934/dcds.2014.34.1319 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]