• Previous Article
    Analytic results for the linear stability of the equilibrium point in Robe's restricted elliptic three-body problem
  • DCDS Home
  • This Issue
  • Next Article
    Conserved quantities, global existence and blow-up for a generalized CH equation
March  2017, 37(3): 1749-1762. doi: 10.3934/dcds.2017073

Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations

Department of Mathematics, School of Sciences, Wuhan University of Technology, Wuhan 430070, China

Received  May 2016 Revised  September 2016 Published  December 2016

Fund Project: The author is supported by NSFC grants 11501555 and 11471331.

We study the following minimization problem:
${d_{{a_q}}}(q): = \mathop {\inf }\limits_{\{ \int {_{{\mathbb{R}^2}}|u{|^2}dx = 1} \} } {E_{q,{a_q}}}(u),$
where the functional
$E_{q,a_q}(·)$
is given by
${{E}_{q,{{a}_{q}}}}(u):=\int_{{{\mathbb{R}}^{2}}}{(|\nabla u(x){{|}^{2}}+V(x)|u(x){{|}^{2}})}dx-\frac{2{{a}_{q}}}{q+2}\int_{{{\mathbb{R}}^{2}}}{|}u(x){{|}^{q+2}}dx.$
Here
$a_q>0, \ q∈(0,2)$
and
$V(x)$
is some type of trapping potential. Let
$a^*:= \|Q\|_2^2$
, where
$Q$
is the unique (up to translations) positive radial solution of
$Δ u-u+u^3=0$
in
$\mathbb{R}^2$
. We prove that if
$\lim_{q\nearrow2}a_q=a<a^*$
, then minimizers of
$d_{a_q}(q)$
is compact in a suitable space as
$q\nearrow2$
. On the contraty, if
$\lim_{q\nearrow2}a_q=a≥q a^*$
, by directly using asymptotic analysis, we prove that all minimizers must blow up and give the detailed asymptotic behavior of minimizers. These conclusions extend the results of Guo-Zeng-Zhou [Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations, J. Differential Equations. 256, (2014), 2079-2100].
Citation: Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073
References:
[1]

W. Z. Bao and Y. Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2003), 1-135.  doi: 10.3934/krm.2013.6.1.

[2]

T. Bartsch amd Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^N$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.

[3]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.

[4]

J. Byeon and Z. Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165 (2002), 295-316.  doi: 10.1007/s00205-002-0225-6.

[5]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics Vol. 10 Courant Institute of Mathematical Science/AMS, New York, 2003.

[6]

M. del PinoM. Kowalczyk and J. C. Wei, Concentration on curves for nonlinear schrödinger equations, Comm. Pure Appl. Math., 60 (2007), 113-146.  doi: 10.1002/cpa.20135.

[7]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, in Mathematical analysis and applications Part A, Adv. in Math. Suppl. Stud. vol. 7, Academic Press, New York, (1981), 369–402.

[8]

Y. J. Guo and R. Seiringer, On the mass concentration for Bose-Einstein condensates with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.  doi: 10.1007/s11005-013-0667-9.

[9]

Y. J. Guo, Z. -Q. Wang, X. Y. Zeng and H. S. Zhou, Properties for ground states of attractive Gross-Pitaevskii equations with multi-well potentials, arXiv: 1502.01839.

[10]

Y. J. GuoX. Y. Zeng and H. S. Zhou, Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations, J. Differential Equations., 2014 (256), 2079-2100.  doi: 10.1016/j.jde.2013.12.012.

[11]

Y. J. GuoX. Y. Zeng and H. S. Zhou, Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. I. H. Poincaré-AN, 33 (2016), 809-828.  doi: 10.1016/j.anihpc.2015.01.005.

[12]

Q. Han and F. H. Lin, Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics Vol. 1 2$^{nd}$ edition, Courant Institute of Mathematical Science/AMS, New York, 2011.

[13]

M. K. Kwong, Uniqueness of positive solutions of $Δ u-u+u^p=0$ in $\mathbb{R}^N$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.

[14]

Y. Li and W.-M. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, Comm. Partial Differential Equations, 18 (1993), 1043-1054.  doi: 10.1080/03605309308820960.

[15]

E. H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A 61 (2000), 043602-1-13.

[16]

P. L. Lions, The concentration-compactness principle in the caclulus of variations. The locally compact case Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 109-145. 

[17]

P. L. Lions, The concentration-compactness principle in the caclulus of variations. The locally compact case Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 223-283. 

[18]

G. Z. Lu and J. C. Wei, On nonlinear schrödinger equations with totally degenerate potentials, C. R. Acad. Sci. Paris., 326 (1998), 691-696.  doi: 10.1016/S0764-4442(98)80032-3.

[19]

M. Maeda, On the symmetry of the ground states of nonlinear Schrödinger equation with potential, Adv. Nonlinear Stud., 10 (2010), 895-925.  doi: 10.1515/ans-2010-0409.

[20]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅳ. Analysis of Operators Academic Press, New York-London, 1978.

[21]

H. A. Rose and M. I. Weinstein, On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D, 30 (1988), 207-218.  doi: 10.1016/0167-2789(88)90107-8.

[22]

R. Seiringer, Hot topics in cold gases, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, (2010), 231-245.  doi: 10.1142/9789814304634_0013.

[23]

C. A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc., 45 (1982), 169-192.  doi: 10.1112/plms/s3-45.1.169.

[24]

C. A. Stuart, Bifurcation from the essential spectrum, Springer, Berlin, 45 (1983), 169-192.  doi: 10.1007/BFb0103282.

[25]

C. A. Stuart, Bifurcation from the essential spectrum for some non-compact non-linearities, Math. Methods Applied Sci., 11 (1989), 525-542.  doi: 10.1002/mma.1670110408.

[26]

X. F. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.  doi: 10.1007/BF02096642.

[27]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolations estimates, Comm. Math. Phys., 87 (1983), 567-576. 

show all references

References:
[1]

W. Z. Bao and Y. Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2003), 1-135.  doi: 10.3934/krm.2013.6.1.

[2]

T. Bartsch amd Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^N$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.

[3]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.

[4]

J. Byeon and Z. Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165 (2002), 295-316.  doi: 10.1007/s00205-002-0225-6.

[5]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics Vol. 10 Courant Institute of Mathematical Science/AMS, New York, 2003.

[6]

M. del PinoM. Kowalczyk and J. C. Wei, Concentration on curves for nonlinear schrödinger equations, Comm. Pure Appl. Math., 60 (2007), 113-146.  doi: 10.1002/cpa.20135.

[7]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, in Mathematical analysis and applications Part A, Adv. in Math. Suppl. Stud. vol. 7, Academic Press, New York, (1981), 369–402.

[8]

Y. J. Guo and R. Seiringer, On the mass concentration for Bose-Einstein condensates with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.  doi: 10.1007/s11005-013-0667-9.

[9]

Y. J. Guo, Z. -Q. Wang, X. Y. Zeng and H. S. Zhou, Properties for ground states of attractive Gross-Pitaevskii equations with multi-well potentials, arXiv: 1502.01839.

[10]

Y. J. GuoX. Y. Zeng and H. S. Zhou, Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations, J. Differential Equations., 2014 (256), 2079-2100.  doi: 10.1016/j.jde.2013.12.012.

[11]

Y. J. GuoX. Y. Zeng and H. S. Zhou, Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. I. H. Poincaré-AN, 33 (2016), 809-828.  doi: 10.1016/j.anihpc.2015.01.005.

[12]

Q. Han and F. H. Lin, Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics Vol. 1 2$^{nd}$ edition, Courant Institute of Mathematical Science/AMS, New York, 2011.

[13]

M. K. Kwong, Uniqueness of positive solutions of $Δ u-u+u^p=0$ in $\mathbb{R}^N$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.

[14]

Y. Li and W.-M. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, Comm. Partial Differential Equations, 18 (1993), 1043-1054.  doi: 10.1080/03605309308820960.

[15]

E. H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A 61 (2000), 043602-1-13.

[16]

P. L. Lions, The concentration-compactness principle in the caclulus of variations. The locally compact case Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 109-145. 

[17]

P. L. Lions, The concentration-compactness principle in the caclulus of variations. The locally compact case Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 223-283. 

[18]

G. Z. Lu and J. C. Wei, On nonlinear schrödinger equations with totally degenerate potentials, C. R. Acad. Sci. Paris., 326 (1998), 691-696.  doi: 10.1016/S0764-4442(98)80032-3.

[19]

M. Maeda, On the symmetry of the ground states of nonlinear Schrödinger equation with potential, Adv. Nonlinear Stud., 10 (2010), 895-925.  doi: 10.1515/ans-2010-0409.

[20]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅳ. Analysis of Operators Academic Press, New York-London, 1978.

[21]

H. A. Rose and M. I. Weinstein, On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D, 30 (1988), 207-218.  doi: 10.1016/0167-2789(88)90107-8.

[22]

R. Seiringer, Hot topics in cold gases, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, (2010), 231-245.  doi: 10.1142/9789814304634_0013.

[23]

C. A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc., 45 (1982), 169-192.  doi: 10.1112/plms/s3-45.1.169.

[24]

C. A. Stuart, Bifurcation from the essential spectrum, Springer, Berlin, 45 (1983), 169-192.  doi: 10.1007/BFb0103282.

[25]

C. A. Stuart, Bifurcation from the essential spectrum for some non-compact non-linearities, Math. Methods Applied Sci., 11 (1989), 525-542.  doi: 10.1002/mma.1670110408.

[26]

X. F. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.  doi: 10.1007/BF02096642.

[27]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolations estimates, Comm. Math. Phys., 87 (1983), 567-576. 

[1]

Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827

[2]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[3]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[4]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[5]

Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure and Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034

[6]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[7]

Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085

[8]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169

[9]

Jinmyong An, Roesong Jang, Jinmyong Kim. Global existence and blow-up for the focusing inhomogeneous nonlinear Schrödinger equation with inverse-square potential. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022111

[10]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[11]

Van Duong Dinh. Blow-up criteria for linearly damped nonlinear Schrödinger equations. Evolution Equations and Control Theory, 2021, 10 (3) : 599-617. doi: 10.3934/eect.2020082

[12]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[13]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[14]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[15]

Chenglin Wang, Jian Zhang. Cross-constrained variational method and nonlinear Schrödinger equation with partial confinement. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021036

[16]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

[17]

Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure and Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010

[18]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[19]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure and Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[20]

Nan Lu. Non-localized standing waves of the hyperbolic cubic nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3533-3567. doi: 10.3934/dcds.2015.35.3533

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (204)
  • HTML views (61)
  • Cited by (7)

Other articles
by authors

[Back to Top]