\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations

The author is supported by NSFC grants 11501555 and 11471331.
Abstract Full Text(HTML) Related Papers Cited by
  • We study the following minimization problem:

    ${d_{{a_q}}}(q): = \mathop {\inf }\limits_{\{ \int {_{{\mathbb{R}^2}}|u{|^2}dx = 1} \} } {E_{q,{a_q}}}(u),$

    where the functional $E_{q,a_q}(·)$ is given by

    ${{E}_{q,{{a}_{q}}}}(u):=\int_{{{\mathbb{R}}^{2}}}{(|\nabla u(x){{|}^{2}}+V(x)|u(x){{|}^{2}})}dx-\frac{2{{a}_{q}}}{q+2}\int_{{{\mathbb{R}}^{2}}}{|}u(x){{|}^{q+2}}dx.$

    Here $a_q>0, \ q∈(0,2)$ and $V(x)$ is some type of trapping potential. Let $a^*:= \|Q\|_2^2$ , where $Q$ is the unique (up to translations) positive radial solution of $Δ u-u+u^3=0$ in $\mathbb{R}^2$ . We prove that if $\lim_{q\nearrow2}a_q=a<a^*$ , then minimizers of $d_{a_q}(q)$ is compact in a suitable space as $q\nearrow2$ . On the contraty, if $\lim_{q\nearrow2}a_q=a≥q a^*$ , by directly using asymptotic analysis, we prove that all minimizers must blow up and give the detailed asymptotic behavior of minimizers. These conclusions extend the results of Guo-Zeng-Zhou [Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations, J. Differential Equations. 256, (2014), 2079-2100].

    Mathematics Subject Classification: 35J20, 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] W. Z. Bao and Y. Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation, Kinet. Relat. Models, 6 (2003), 1-135.  doi: 10.3934/krm.2013.6.1.
    [2] T. Bartsch amd Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^N$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.  doi: 10.1080/03605309508821149.
    [3] H. Berestycki and P. L. Lions, Nonlinear scalar field equations. Ⅰ. Existence of a ground state, Arch. Rat. Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.
    [4] J. Byeon and Z. Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal., 165 (2002), 295-316.  doi: 10.1007/s00205-002-0225-6.
    [5] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics Vol. 10 Courant Institute of Mathematical Science/AMS, New York, 2003.
    [6] M. del PinoM. Kowalczyk and J. C. Wei, Concentration on curves for nonlinear schrödinger equations, Comm. Pure Appl. Math., 60 (2007), 113-146.  doi: 10.1002/cpa.20135.
    [7] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, in Mathematical analysis and applications Part A, Adv. in Math. Suppl. Stud. vol. 7, Academic Press, New York, (1981), 369–402.
    [8] Y. J. Guo and R. Seiringer, On the mass concentration for Bose-Einstein condensates with attractive interactions, Lett. Math. Phys., 104 (2014), 141-156.  doi: 10.1007/s11005-013-0667-9.
    [9] Y. J. Guo, Z. -Q. Wang, X. Y. Zeng and H. S. Zhou, Properties for ground states of attractive Gross-Pitaevskii equations with multi-well potentials, arXiv: 1502.01839.
    [10] Y. J. GuoX. Y. Zeng and H. S. Zhou, Concentration behavior of standing waves for almost mass critical nonlinear Schrödinger equations, J. Differential Equations., 2014 (256), 2079-2100.  doi: 10.1016/j.jde.2013.12.012.
    [11] Y. J. GuoX. Y. Zeng and H. S. Zhou, Energy estimates and symmetry breaking in attractive Bose-Einstein condensates with ring-shaped potentials, Ann. I. H. Poincaré-AN, 33 (2016), 809-828.  doi: 10.1016/j.anihpc.2015.01.005.
    [12] Q. Han and F. H. Lin, Elliptic Partial Differential Equations, Courant Lecture Notes in Mathematics Vol. 1 2$^{nd}$ edition, Courant Institute of Mathematical Science/AMS, New York, 2011.
    [13] M. K. Kwong, Uniqueness of positive solutions of $Δ u-u+u^p=0$ in $\mathbb{R}^N$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.
    [14] Y. Li and W.-M. Ni, Radial symmetry of positive solutions of nonlinear elliptic equations in $\mathbb{R}^n$, Comm. Partial Differential Equations, 18 (1993), 1043-1054.  doi: 10.1080/03605309308820960.
    [15] E. H. Lieb, R. Seiringer and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A 61 (2000), 043602-1-13.
    [16] P. L. Lions, The concentration-compactness principle in the caclulus of variations. The locally compact case Ⅰ, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 109-145. 
    [17] P. L. Lions, The concentration-compactness principle in the caclulus of variations. The locally compact case Ⅱ, Ann. Inst. H. Poincaré Anal. Non Linéaire., 1 (1984), 223-283. 
    [18] G. Z. Lu and J. C. Wei, On nonlinear schrödinger equations with totally degenerate potentials, C. R. Acad. Sci. Paris., 326 (1998), 691-696.  doi: 10.1016/S0764-4442(98)80032-3.
    [19] M. Maeda, On the symmetry of the ground states of nonlinear Schrödinger equation with potential, Adv. Nonlinear Stud., 10 (2010), 895-925.  doi: 10.1515/ans-2010-0409.
    [20] M. Reed and B. Simon, Methods of Modern Mathematical Physics. Ⅳ. Analysis of Operators Academic Press, New York-London, 1978.
    [21] H. A. Rose and M. I. Weinstein, On the bound states of the nonlinear Schrödinger equation with a linear potential, Physica D, 30 (1988), 207-218.  doi: 10.1016/0167-2789(88)90107-8.
    [22] R. Seiringer, Hot topics in cold gases, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, (2010), 231-245.  doi: 10.1142/9789814304634_0013.
    [23] C. A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc., 45 (1982), 169-192.  doi: 10.1112/plms/s3-45.1.169.
    [24] C. A. Stuart, Bifurcation from the essential spectrum, Springer, Berlin, 45 (1983), 169-192.  doi: 10.1007/BFb0103282.
    [25] C. A. Stuart, Bifurcation from the essential spectrum for some non-compact non-linearities, Math. Methods Applied Sci., 11 (1989), 525-542.  doi: 10.1002/mma.1670110408.
    [26] X. F. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys., 153 (1993), 229-244.  doi: 10.1007/BF02096642.
    [27] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolations estimates, Comm. Math. Phys., 87 (1983), 567-576. 
  • 加载中
SHARE

Article Metrics

HTML views(211) PDF downloads(219) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return