April  2017, 37(4): 1789-1818. doi: 10.3934/dcds.2017075

On a resonant mean field type equation: A "critical point at Infinity" approach

1. 

Mathematisches Institut der Justus-Liebig-Universität Giessen, Arndtsrasse 2, D-35392 Giessen, Germany

2. 

Université de Sfax, Faculté des Sciences, Département de Mathématiques, Route de Soukra, Sfax, Tunisia

3. 

The City University of New York, CSI, Mathematics Department, 2800 Victory Boulevard, Staten Island New York 10314, USA

* Corresponding author: Mohameden.Ahmedou@math.uni-giessen.de.

Received  February 2016 Revised  November 2016 Published  December 2016

Fund Project: This work was partially supported by a grant from the Simons Foundation (Nr. 210368 to Marcello Lucia) and the grant MTM2014-52402-C3-1-P (Spain).

We consider the following mean field type equations on domains of
$\mathbb R^2$
under Dirichlet boundary conditions:
$\left\{ \begin{array}{l} - \Delta u = \varrho \frac{{K {e^u}}}{{\int_\Omega {K {e^u}} }}\;\;\;\;\;{\rm{in}}\;\Omega ,\\\;\;\;\;u = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;{\rm{on}}\;\partial \Omega ,\end{array} \right.$
where
$K$
is a smooth positive function and
$\varrho$
is a positive real parameter.
A "critical point theory at Infinity" approach of A. Bahri to the above problem is developed for the resonant case, i.e. when the parameter
$\varrho$
is a multiple of
$8 π$
. Namely, we identify the so-called "critical points at infinity" of the associated variational problem and compute their Morse indices. We then prove some Bahri-Coron type results which can be seen as a generalization of a degree formula in the non-resonant case due to C.C.Chen and C.S.[18].
Citation: Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075
References:
[1]

T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-13006-3.  Google Scholar

[2]

A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, 182. Longman Scientific Technical, Harlow; copublished in the United States with John Wiley Sons, Inc. , New York, 1989.  Google Scholar

[3]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math, 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.  Google Scholar

[4]

A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal., 95 (1991), 106-172.  doi: 10.1016/0022-1236(91)90026-2.  Google Scholar

[5]

A. Bahri and P. Rabinowitz, Periodic solutions of Hamiltonian systems of 3-body type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 561-649.   Google Scholar

[6]

A. Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension. A celebration of John F. Nash, Jr, Duke Math. J., 81 (1996), 323-466.  doi: 10.1215/S0012-7094-96-08116-8.  Google Scholar

[7]

D. Bartolucci and C. S. Lin, Existence and Uniqueness of mean field equation on multiply connected domains at the critical parameter, Math. Ann., 359 (2014), 1-44.  doi: 10.1007/s00208-013-0990-6.  Google Scholar

[8]

D. Bartolucci and F. De Marchis, Supercritical mean field equations on convex domains and the Onsager's statistical description of two dimensional turbulence, Arch. Ration. Mech. Anal., 217 (2015), 525-570.  doi: 10.1007/s00205-014-0836-8.  Google Scholar

[9]

M. Ben AyedY. ChenH. Chtioui and M. Hammami, On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., 84 (1996), 633-677.  doi: 10.1215/S0012-7094-96-08420-3.  Google Scholar

[10]

M. Ben Ayed and M. Ould Ahmedou, Existence and multiplicity results for a fourth order mean field equation, J. Funct. Anal., 258 (2010), 3165-3194.  doi: 10.1016/j.jfa.2010.01.009.  Google Scholar

[11]

H. Brézis and F. Merle, Uniform estimates and blow-up behavior for solutions of ions of −Δu = V (x)eu in two dimensions, Comm. Partial Differential Equations, 16 (1991), 1223-1253.  doi: 10.1080/03605309108820797.  Google Scholar

[12]

E. CagliotiP.-L. LionsC. Marchioro and M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525.  doi: 10.1007/BF02099262.  Google Scholar

[13]

E. CagliotiP.-L. LionsC. Marchioro and M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Part Ⅱ, Comm. Math. Phys., 174 (1995), 229-260.  doi: 10.1007/BF02099602.  Google Scholar

[14]

A. Chang and P. Yang, Prescribing Gaussian curvature on $\mathbb{S}^2$, Acta Math., 159 (1987), 215-259.  doi: 10.1007/BF02392560.  Google Scholar

[15]

A. Chang and P. Yang, Conformal deformations of metrics on $\mathbb{S}^2$, J. Diff. Geom., 27 (1988), 259-296.   Google Scholar

[16]

A. ChangC. C. Chen and C. S. Lin, Extremal function of a mean field equation in two dimension, in Lectures on Partial Differential Equations, New Stud. Adv. Math, 2 (2003), 61-93.   Google Scholar

[17]

C. C. Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math., 55 (2002), 728-771.  doi: 10.1002/cpa.3014.  Google Scholar

[18]

C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727.  doi: 10.1002/cpa.10107.  Google Scholar

[19]

F. De Marchis, Multiplicity result for a scalar field equation on compact surfaces, Comm. PDE, 33 (2008), 2208-2224.  doi: 10.1080/03605300802523446.  Google Scholar

[20]

F. De Marchis, Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192.  doi: 10.1016/j.jfa.2010.07.003.  Google Scholar

[21]

F. De Marchis, Multiplicity of solutions for a mean field equation on compact surfaces, Boll. Unione Mat. Ital., 4 (2011), 245-257.   Google Scholar

[22]

W. DingJ. JostJ. Li and G. Wang, Existence results for mean field equations, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 16 (1999), 653-666.  doi: 10.1016/S0294-1449(99)80031-6.  Google Scholar

[23]

Z. Djadli, Existence result for the mean field problem on Riemann surfaces of all genus, Commun. Contemp. Math., 10 (2008), 205-220.  doi: 10.1142/S0219199708002776.  Google Scholar

[24]

Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math., 168 (2008), 813-858.  doi: 10.4007/annals.2008.168.813.  Google Scholar

[25]

P. EspositoM. Grossi and A. Pistoia, On the existence of blowing up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Lineéaire, 22 (2005), 227-257.  doi: 10.1016/j.anihpc.2004.12.001.  Google Scholar

[26]

Z. C. Han, Prescribing Gaussian curvature on S2, Duke Math. J., 61 (1990), 679-703.  doi: 10.1215/S0012-7094-90-06125-3.  Google Scholar

[27]

Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. Poincaré Anal. non linéaire, 8 (1991), 159-174.   Google Scholar

[28]

M. K. H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math., 46 (1993), 27-56.  doi: 10.1002/cpa.3160460103.  Google Scholar

[29]

Y. Y. Li and I. Shafrir, Blow-up analysis for solutions of $-Δ u=Ve^{u}$ in dimension two, Indiana Univ. Math. J., 43 (1994), 1255-1270.  doi: 10.1512/iumj.1994.43.43054.  Google Scholar

[30]

Y. Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys., 200 (1999), 421-444.  doi: 10.1007/s002200050536.  Google Scholar

[31]

M. Lucia, A deformation Lemma with an application to a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007), 113-138.   Google Scholar

[32]

A. Malchiodi, Morse theory and a scalar field equation on compact surfaces, Adv. Differential Equations, 13 (2008), 1109-1129.   Google Scholar

[33]

A. Malchiodi, Topological Methods for an elliptic equation with exponential nonlinearities, Discrete Contin. Dyn. Syst., 21 (2008), 277-294.  doi: 10.3934/dcds.2008.21.277.  Google Scholar

[34] J. Milnor, Lectures on the H-Cobordism Theorem, Princeton University Press, Princeton, 1965.   Google Scholar
[35] R. Schoen and S. T. Yau, Lectures on Differential Geometry, International Press, 1994.   Google Scholar
[36]

M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione. Math. Ital. Sez. B Artic. Ric. Mat.(8), 1 (1998), 109-121.   Google Scholar

[37]

G. Tarantello, Selfdual Gauge Field Vortices: An Analytic Approach, Progress in Nonlinear differential equations, 72, Birkhäuser Boston, Inc. Boston, MA, 2008. doi: 10.1007/978-0-8176-4608-0.  Google Scholar

[38]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer monographs in Mathematics, Springer Verlag, New York, Inc, 2001. doi: 10.1007/978-1-4757-6548-9.  Google Scholar

[39]

L. Zhang, Blow up solutions of some nonlinear elliptic equation involving exponential nonlinearities, Com. Math. Phys., 268 (2006), 105-133.  doi: 10.1007/s00220-006-0092-3.  Google Scholar

show all references

References:
[1]

T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-662-13006-3.  Google Scholar

[2]

A. Bahri, Critical Points at Infinity in Some Variational Problems, Pitman Research Notes in Mathematics Series, 182. Longman Scientific Technical, Harlow; copublished in the United States with John Wiley Sons, Inc. , New York, 1989.  Google Scholar

[3]

A. Bahri and J.-M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain, Comm. Pure Appl. Math, 41 (1988), 253-294.  doi: 10.1002/cpa.3160410302.  Google Scholar

[4]

A. Bahri and J.-M. Coron, The scalar-curvature problem on the standard three-dimensional sphere, J. Funct. Anal., 95 (1991), 106-172.  doi: 10.1016/0022-1236(91)90026-2.  Google Scholar

[5]

A. Bahri and P. Rabinowitz, Periodic solutions of Hamiltonian systems of 3-body type, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 561-649.   Google Scholar

[6]

A. Bahri, An invariant for Yamabe-type flows with applications to scalar-curvature problems in high dimension. A celebration of John F. Nash, Jr, Duke Math. J., 81 (1996), 323-466.  doi: 10.1215/S0012-7094-96-08116-8.  Google Scholar

[7]

D. Bartolucci and C. S. Lin, Existence and Uniqueness of mean field equation on multiply connected domains at the critical parameter, Math. Ann., 359 (2014), 1-44.  doi: 10.1007/s00208-013-0990-6.  Google Scholar

[8]

D. Bartolucci and F. De Marchis, Supercritical mean field equations on convex domains and the Onsager's statistical description of two dimensional turbulence, Arch. Ration. Mech. Anal., 217 (2015), 525-570.  doi: 10.1007/s00205-014-0836-8.  Google Scholar

[9]

M. Ben AyedY. ChenH. Chtioui and M. Hammami, On the prescribed scalar curvature problem on 4-manifolds, Duke Math. J., 84 (1996), 633-677.  doi: 10.1215/S0012-7094-96-08420-3.  Google Scholar

[10]

M. Ben Ayed and M. Ould Ahmedou, Existence and multiplicity results for a fourth order mean field equation, J. Funct. Anal., 258 (2010), 3165-3194.  doi: 10.1016/j.jfa.2010.01.009.  Google Scholar

[11]

H. Brézis and F. Merle, Uniform estimates and blow-up behavior for solutions of ions of −Δu = V (x)eu in two dimensions, Comm. Partial Differential Equations, 16 (1991), 1223-1253.  doi: 10.1080/03605309108820797.  Google Scholar

[12]

E. CagliotiP.-L. LionsC. Marchioro and M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525.  doi: 10.1007/BF02099262.  Google Scholar

[13]

E. CagliotiP.-L. LionsC. Marchioro and M. Pulvirenti, A special class of stationary flows for two dimensional Euler equations: a statistical mechanics description, Part Ⅱ, Comm. Math. Phys., 174 (1995), 229-260.  doi: 10.1007/BF02099602.  Google Scholar

[14]

A. Chang and P. Yang, Prescribing Gaussian curvature on $\mathbb{S}^2$, Acta Math., 159 (1987), 215-259.  doi: 10.1007/BF02392560.  Google Scholar

[15]

A. Chang and P. Yang, Conformal deformations of metrics on $\mathbb{S}^2$, J. Diff. Geom., 27 (1988), 259-296.   Google Scholar

[16]

A. ChangC. C. Chen and C. S. Lin, Extremal function of a mean field equation in two dimension, in Lectures on Partial Differential Equations, New Stud. Adv. Math, 2 (2003), 61-93.   Google Scholar

[17]

C. C. Chen and C. S. Lin, Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Comm. Pure Appl. Math., 55 (2002), 728-771.  doi: 10.1002/cpa.3014.  Google Scholar

[18]

C. C. Chen and C. S. Lin, Topological degree for a mean field equation on Riemann surfaces, Comm. Pure Appl. Math., 56 (2003), 1667-1727.  doi: 10.1002/cpa.10107.  Google Scholar

[19]

F. De Marchis, Multiplicity result for a scalar field equation on compact surfaces, Comm. PDE, 33 (2008), 2208-2224.  doi: 10.1080/03605300802523446.  Google Scholar

[20]

F. De Marchis, Generic multiplicity for a scalar field equation on compact surfaces, J. Funct. Anal., 259 (2010), 2165-2192.  doi: 10.1016/j.jfa.2010.07.003.  Google Scholar

[21]

F. De Marchis, Multiplicity of solutions for a mean field equation on compact surfaces, Boll. Unione Mat. Ital., 4 (2011), 245-257.   Google Scholar

[22]

W. DingJ. JostJ. Li and G. Wang, Existence results for mean field equations, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 16 (1999), 653-666.  doi: 10.1016/S0294-1449(99)80031-6.  Google Scholar

[23]

Z. Djadli, Existence result for the mean field problem on Riemann surfaces of all genus, Commun. Contemp. Math., 10 (2008), 205-220.  doi: 10.1142/S0219199708002776.  Google Scholar

[24]

Z. Djadli and A. Malchiodi, Existence of conformal metrics with constant Q-curvature, Ann. of Math., 168 (2008), 813-858.  doi: 10.4007/annals.2008.168.813.  Google Scholar

[25]

P. EspositoM. Grossi and A. Pistoia, On the existence of blowing up solutions for a mean field equation, Ann. Inst. H. Poincaré Anal. Non Lineéaire, 22 (2005), 227-257.  doi: 10.1016/j.anihpc.2004.12.001.  Google Scholar

[26]

Z. C. Han, Prescribing Gaussian curvature on S2, Duke Math. J., 61 (1990), 679-703.  doi: 10.1215/S0012-7094-90-06125-3.  Google Scholar

[27]

Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. Poincaré Anal. non linéaire, 8 (1991), 159-174.   Google Scholar

[28]

M. K. H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math., 46 (1993), 27-56.  doi: 10.1002/cpa.3160460103.  Google Scholar

[29]

Y. Y. Li and I. Shafrir, Blow-up analysis for solutions of $-Δ u=Ve^{u}$ in dimension two, Indiana Univ. Math. J., 43 (1994), 1255-1270.  doi: 10.1512/iumj.1994.43.43054.  Google Scholar

[30]

Y. Y. Li, Harnack type inequality: The method of moving planes, Comm. Math. Phys., 200 (1999), 421-444.  doi: 10.1007/s002200050536.  Google Scholar

[31]

M. Lucia, A deformation Lemma with an application to a mean field equation, Topol. Methods Nonlinear Anal., 30 (2007), 113-138.   Google Scholar

[32]

A. Malchiodi, Morse theory and a scalar field equation on compact surfaces, Adv. Differential Equations, 13 (2008), 1109-1129.   Google Scholar

[33]

A. Malchiodi, Topological Methods for an elliptic equation with exponential nonlinearities, Discrete Contin. Dyn. Syst., 21 (2008), 277-294.  doi: 10.3934/dcds.2008.21.277.  Google Scholar

[34] J. Milnor, Lectures on the H-Cobordism Theorem, Princeton University Press, Princeton, 1965.   Google Scholar
[35] R. Schoen and S. T. Yau, Lectures on Differential Geometry, International Press, 1994.   Google Scholar
[36]

M. Struwe and G. Tarantello, On multivortex solutions in Chern-Simons gauge theory, Boll. Unione. Math. Ital. Sez. B Artic. Ric. Mat.(8), 1 (1998), 109-121.   Google Scholar

[37]

G. Tarantello, Selfdual Gauge Field Vortices: An Analytic Approach, Progress in Nonlinear differential equations, 72, Birkhäuser Boston, Inc. Boston, MA, 2008. doi: 10.1007/978-0-8176-4608-0.  Google Scholar

[38]

Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer monographs in Mathematics, Springer Verlag, New York, Inc, 2001. doi: 10.1007/978-1-4757-6548-9.  Google Scholar

[39]

L. Zhang, Blow up solutions of some nonlinear elliptic equation involving exponential nonlinearities, Com. Math. Phys., 268 (2006), 105-133.  doi: 10.1007/s00220-006-0092-3.  Google Scholar

[1]

Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391

[2]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[3]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[4]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[5]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[6]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[7]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021005

[8]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[9]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[10]

Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565

[11]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[12]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[13]

Rafael G. L. D'Oliveira, Marcelo Firer. Minimum dimensional Hamming embeddings. Advances in Mathematics of Communications, 2017, 11 (2) : 359-366. doi: 10.3934/amc.2017029

[14]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[15]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[16]

Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021009

[17]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[18]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204

[19]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[20]

Fernando P. da Costa, João T. Pinto, Rafael Sasportes. On the convergence to critical scaling profiles in submonolayer deposition models. Kinetic & Related Models, 2018, 11 (6) : 1359-1376. doi: 10.3934/krm.2018053

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (83)
  • HTML views (64)
  • Cited by (0)

[Back to Top]