Small-amplitude waves in the Fermi-Pasta-Ulam (FPU) lattice with weakly anharmonic interaction potentialsare described by the generalized Korteweg-de Vries (KdV) equation. Justification of the small-amplitudeapproximation is usually performed on the time scale, for which dynamics of the KdV equation is defined.We show how to extend justification analysis on longer time intervals provided dynamics of the generalized KdVequation is globally well-posed in Sobolev spaces and either the Sobolev norms are globally boundedor they grow at most polynomially. The time intervals are extended respectively by the logarithmic or double logarithmic factorsin terms of the small amplitude parameter. Controlling the approximation error on longer time intervalsallows us to deduce nonlinear metastability of small FPU solitary waves from orbital stability of the KdV solitary waves.
Citation: |
[1] |
D. Bambusi and T. Penati, Continuous approximation of breathers in 1D and 2D DNLS lattices, Nonlinearity, 23 (2010), 143-157.
doi: 10.1088/0951-7715/23/1/008.![]() ![]() ![]() |
[2] |
D. Bambusi and A. Ponno, On metastability in FPU, Comm. Math. Phys., 264 (2006), 539-561.
doi: 10.1007/s00220-005-1488-1.![]() ![]() ![]() |
[3] |
G. N. Benes, A. Hoffman and C. E. Wayne, Asymptotic stability of the Toda m-soliton, J. Math. Anal. Appl., 386 (2012), 445-460.
doi: 10.1016/j.jmaa.2011.08.007.![]() ![]() ![]() |
[4] |
B. Bidegaray-Fesquet, E. Dumas and G. James, From Newton's cradle to the discrete p-Schrödinger equation, SIAM J. Math. Anal., 45 (2013), 3404-3430.
doi: 10.1137/130924196.![]() ![]() ![]() |
[5] |
J. Bona, Y. Liu and N. V. Ngueyn, Stability fo solitary waves in higher-order Sobolev spaces, Comm Math. Sci., 2 (2004), 35-52.
doi: 10.4310/CMS.2004.v2.n1.a3.![]() ![]() ![]() |
[6] |
E. Dumas and D. E. Pelinovsky, Justification of the log-KdV equation in granular chains: The case of precompression, SIAM J. Math. Anal., 46 (2014), 4075-4103.
doi: 10.1137/140969270.![]() ![]() ![]() |
[7] |
G. Friesecke and R. L. Pego, Solitary waves on FPU lattices, Nonlinearity, 12 (1999), 1601-1627; 15 (2002), 1343-1359; 17 (2004), 207-227; 17 (2004), 229-251.
![]() |
[8] |
J. Gaison, S. Moskow, J. D. Wright and Q. Zhang, Approximation of polyatomic FPU lattices by KdV equations, Multiscale Model. Simul., 12 (2014), 953-995.
doi: 10.1137/130941638.![]() ![]() ![]() |
[9] |
A. Hoffman and C. E. Wayne, Asymptotic two-soliton solutions in the Fermi-Pasta-Ulam model, J. Dynam. Differential Equations, 21 (2009), 343-351.
doi: 10.1007/s10884-009-9134-9.![]() ![]() ![]() |
[10] |
T. Kato, On the Korteweg-de Vries equation, Manuscript Math., 28 (1979), 89-99.
doi: 10.1007/BF01647967.![]() ![]() |
[11] |
T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Stud. Appl. Math., 8 (1983), 93-128.
![]() ![]() |
[12] |
C. Kenig, G. Ponce and L. Vega, Well-posedness of the initial-value problem for the Korteweg-De Vries equation, J. Americ. Math. Soc., 4 (1991), 323-347.
doi: 10.1090/S0894-0347-1991-1086966-0.![]() ![]() ![]() |
[13] |
C. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-De Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.
doi: 10.1002/cpa.3160460405.![]() ![]() ![]() |
[14] |
D. Lannes and J. Rauch, Validity of nonlinear geometric optics with times growing logarithmically, Proc. AMS, 129 (2000), 1087-1096.
doi: 10.1090/S0002-9939-00-05845-7.![]() ![]() ![]() |
[15] |
R. M. Miura, C. S. Gardner and M. D. Kruskal, Korteweg-de Vries equations and generalization. Ⅱ. Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204-1209.
doi: 10.1063/1.1664701.![]() ![]() ![]() |
[16] |
T. Mizumachi, Asymptotic stability of lattice solitons in the energy space, Commun. Math. Phys., 288 (2009), 125-144.
doi: 10.1007/s00220-009-0768-6.![]() ![]() ![]() |
[17] |
T. Mizumachi, Asymptotic stability of N-solitary waves of the FPU lattices, Archive for Rational Mechanics and Analysis, 207 (2013), 393-457.
doi: 10.1007/s00205-012-0564-x.![]() ![]() ![]() |
[18] |
R. L. Pego and M. I. Weinstein, Eigenvalues, and instabilities of solitary waves, Philos. Trans. Roy. Soc. London A, 340 (1992), 47-94.
doi: 10.1098/rsta.1992.0055.![]() ![]() ![]() |
[19] |
R. L. Pego and M. I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys., 164 (1994), 305-349.
doi: 10.1007/BF02101705.![]() ![]() ![]() |
[20] |
D. Pelinovsky, T. Penati and S. Paleari, Approximation of small-amplitude weakly coupled oscillators with discrete nonlinear Schrödinger equations, Rev. Math. Phys., 28 (2016), 1650015(25 pages).
doi: 10.1142/S0129055X1650015X.![]() ![]() ![]() |
[21] |
G. Schneider and C. E. Wayne, Counter-propagating waves on fluid surfaces and the continuum limit of the Fermi-Pasta-Ulam model, In International Conference on Differential Equations (Berlin, 1999), vol. 1 (eds B Fiedler, K Gröger, J Sprekels), pp. 390-404 (World Sci. Publishing, River Edge, NJ, USA, 2000).
![]() ![]() |
[22] |
G. Staffilani, On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations, Duke Math. J., 86 (1997), 109-142.
doi: 10.1215/S0012-7094-97-08604-X.![]() ![]() ![]() |