April  2017, 37(4): 2115-2140. doi: 10.3934/dcds.2017091

Degenerate with respect to parameters fold-Hopf bifurcations

Department of Mathematics, Politehnica University of Timisoara, Pta Victoriei, No. 2,300006, Timisoara, Timis, Romania

Received  May 2016 Revised  November 2016 Published  December 2016

Fund Project: The author is supported by grant FP7-PEOPLE-2012-IRSES-316338.

In this work we study degenerate with respect to parameters fold-Hopfbifurcations in three-dimensional differential systems. Such degeneraciesarise when the transformations between parameters leading to a normal formare not regular at some points in the parametric space. We obtain newgeneric results for the dynamics of the systems in such a degenerateframework. The bifurcation diagrams we obtained show that in a degeneratecontext the dynamics may be completely different than in a non-degenerateframework.

Citation: Gheorghe Tigan. Degenerate with respect to parameters fold-Hopf bifurcations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2115-2140. doi: 10.3934/dcds.2017091
References:
[1]

G. Chen and T. Ueta, Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 9 (1999), 1465-1466.  doi: 10.1142/S0218127499001024.  Google Scholar

[2]

J.D. Crawford and E. Knobloch, Classification and unfolding of degenerate Hopf bifurcations with O(2) symmetry: No distinguished parameter, Physica D: Nonlinear Phenomena, 31 (1988), 1-48.  doi: 10.1016/0167-2789(88)90011-5.  Google Scholar

[3]

F. DumortierS. IbanezH. Kokubu and C. Simo, About the unfolding of a Hopf-zero singularity, Discrete and Continuous Dynamical Systems -Series A, 33 (2013), 4435-4471.  doi: 10.3934/dcds.2013.33.4435.  Google Scholar

[4]

I. Garcia and C. Valls, The three-dimensional center problem for the zero-Hopf singularity, Discrete and Continuous Dynamical Systems -Series A, 36 (2016), 2027-2046.  doi: 10.3934/dcds.2016.36.2027.  Google Scholar

[5]

X. HeC. Li and Y. Shu, Triple-zero bifurcation in van der Pol's oscillator with delayed feedback, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 5229-5239.  doi: 10.1016/j.cnsns.2012.05.001.  Google Scholar

[6]

J. Huang and Y. Zhao, Bifurcation of isolated closed orbits from degenerated singularity, Discrete and Continuous Dynamical Systems -Series A, 33 (2013), 2861-2883.  doi: 10.3934/dcds.2013.33.2861.  Google Scholar

[7]

W. Jiang and B. Niu, On the coexistence of periodic or quasi-periodic oscillations near a Hopf-pitchfork bifurcation in NFDE, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 464-477.  doi: 10.1016/j.cnsns.2012.08.004.  Google Scholar

[8]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory Springer-Verlag, 1995. doi: 10.1007/978-1-4757-2421-9.  Google Scholar

[9]

J. S. W. LambM.-A. Teixeira and K. N. Webster, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in $\mathbb{R}^{3}$, Journal of Differential Equations, 219 (2005), 78-115.  doi: 10.1016/j.jde.2005.02.019.  Google Scholar

[10]

C. Lazureanu and T. Binzar, On the symmetries of a Rikitake type system, C. R. Acad. Sci. Paris, Ser. I, 350 (2012), 529-533.  doi: 10.1016/j.crma.2012.04.016.  Google Scholar

[11]

C. Lazureanu and T. Binzar, On a new chaotic system, Mathematical Methods in the Applied Sciences, 38 (2015), 1631-1641.  doi: 10.1002/mma.3174.  Google Scholar

[12]

J. Lu and G. Chen, A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12 (2012), 659-661.  doi: 10.1142/S0218127402004620.  Google Scholar

[13]

M. Perez-Molina and M. F. Perez-Polo, Fold-Hopf bifurcation, steady state, self-oscillating and chaotic behavior in an electromechanical transducer with nonlinear control, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 5172-5188.  doi: 10.1016/j.cnsns.2012.06.004.  Google Scholar

[14]

E. PonceJ. Ros and E. Vela, Unfolding the fold-Hopf bifurcation in piecewise linear continuous differential systems with symmetry, Physica D: Nonlinear Phenomena, 250 (2013), 34-46.  doi: 10.1016/j.physd.2013.01.010.  Google Scholar

[15]

R. QesmiM. Ait Babram and M. L. Hbid, Center manifolds and normal forms for a class of retarded functional differential equations with parameter associated with Fold-Hopf singularity, Applied Mathematics and Computation, 181 (2006), 220-246.  doi: 10.1016/j.amc.2006.01.030.  Google Scholar

[16]

J. C. Sprott, Some simple chaotic flows, Physical Review E, 50 (1994), 647-650.  doi: 10.1103/PhysRevE.50.R647.  Google Scholar

[17]

G. Tigan, Analysis of a dynamical system derived from the Lorenz system, Scientific Bulletin of the Politehnica University of Timisoara, 50 (2005), 61-72.   Google Scholar

[18]

G. Tigan and D. Opris, Analysis of a 3D dynamical system, Chaos, Solitons and Fractals, 36 (2008), 1315-1319.  doi: 10.1016/j.chaos.2006.07.052.  Google Scholar

[19]

G. Tigan, Analysis of degenerate fold-Hopf bifurcation in a three-dimensional differential system, Qualitative Theory of Dynamical Systems, to appear. Google Scholar

[20]

P. D. Woods and A. R. Champneys, Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bifurcation, Physica D: Nonlinear Phenomena, 129 (1999), 147-170.  doi: 10.1016/S0167-2789(98)00309-1.  Google Scholar

show all references

References:
[1]

G. Chen and T. Ueta, Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 9 (1999), 1465-1466.  doi: 10.1142/S0218127499001024.  Google Scholar

[2]

J.D. Crawford and E. Knobloch, Classification and unfolding of degenerate Hopf bifurcations with O(2) symmetry: No distinguished parameter, Physica D: Nonlinear Phenomena, 31 (1988), 1-48.  doi: 10.1016/0167-2789(88)90011-5.  Google Scholar

[3]

F. DumortierS. IbanezH. Kokubu and C. Simo, About the unfolding of a Hopf-zero singularity, Discrete and Continuous Dynamical Systems -Series A, 33 (2013), 4435-4471.  doi: 10.3934/dcds.2013.33.4435.  Google Scholar

[4]

I. Garcia and C. Valls, The three-dimensional center problem for the zero-Hopf singularity, Discrete and Continuous Dynamical Systems -Series A, 36 (2016), 2027-2046.  doi: 10.3934/dcds.2016.36.2027.  Google Scholar

[5]

X. HeC. Li and Y. Shu, Triple-zero bifurcation in van der Pol's oscillator with delayed feedback, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 5229-5239.  doi: 10.1016/j.cnsns.2012.05.001.  Google Scholar

[6]

J. Huang and Y. Zhao, Bifurcation of isolated closed orbits from degenerated singularity, Discrete and Continuous Dynamical Systems -Series A, 33 (2013), 2861-2883.  doi: 10.3934/dcds.2013.33.2861.  Google Scholar

[7]

W. Jiang and B. Niu, On the coexistence of periodic or quasi-periodic oscillations near a Hopf-pitchfork bifurcation in NFDE, Communications in Nonlinear Science and Numerical Simulation, 18 (2013), 464-477.  doi: 10.1016/j.cnsns.2012.08.004.  Google Scholar

[8]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory Springer-Verlag, 1995. doi: 10.1007/978-1-4757-2421-9.  Google Scholar

[9]

J. S. W. LambM.-A. Teixeira and K. N. Webster, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in $\mathbb{R}^{3}$, Journal of Differential Equations, 219 (2005), 78-115.  doi: 10.1016/j.jde.2005.02.019.  Google Scholar

[10]

C. Lazureanu and T. Binzar, On the symmetries of a Rikitake type system, C. R. Acad. Sci. Paris, Ser. I, 350 (2012), 529-533.  doi: 10.1016/j.crma.2012.04.016.  Google Scholar

[11]

C. Lazureanu and T. Binzar, On a new chaotic system, Mathematical Methods in the Applied Sciences, 38 (2015), 1631-1641.  doi: 10.1002/mma.3174.  Google Scholar

[12]

J. Lu and G. Chen, A new chaotic attractor coined, International Journal of Bifurcation and Chaos, 12 (2012), 659-661.  doi: 10.1142/S0218127402004620.  Google Scholar

[13]

M. Perez-Molina and M. F. Perez-Polo, Fold-Hopf bifurcation, steady state, self-oscillating and chaotic behavior in an electromechanical transducer with nonlinear control, Communications in Nonlinear Science and Numerical Simulation, 17 (2012), 5172-5188.  doi: 10.1016/j.cnsns.2012.06.004.  Google Scholar

[14]

E. PonceJ. Ros and E. Vela, Unfolding the fold-Hopf bifurcation in piecewise linear continuous differential systems with symmetry, Physica D: Nonlinear Phenomena, 250 (2013), 34-46.  doi: 10.1016/j.physd.2013.01.010.  Google Scholar

[15]

R. QesmiM. Ait Babram and M. L. Hbid, Center manifolds and normal forms for a class of retarded functional differential equations with parameter associated with Fold-Hopf singularity, Applied Mathematics and Computation, 181 (2006), 220-246.  doi: 10.1016/j.amc.2006.01.030.  Google Scholar

[16]

J. C. Sprott, Some simple chaotic flows, Physical Review E, 50 (1994), 647-650.  doi: 10.1103/PhysRevE.50.R647.  Google Scholar

[17]

G. Tigan, Analysis of a dynamical system derived from the Lorenz system, Scientific Bulletin of the Politehnica University of Timisoara, 50 (2005), 61-72.   Google Scholar

[18]

G. Tigan and D. Opris, Analysis of a 3D dynamical system, Chaos, Solitons and Fractals, 36 (2008), 1315-1319.  doi: 10.1016/j.chaos.2006.07.052.  Google Scholar

[19]

G. Tigan, Analysis of degenerate fold-Hopf bifurcation in a three-dimensional differential system, Qualitative Theory of Dynamical Systems, to appear. Google Scholar

[20]

P. D. Woods and A. R. Champneys, Heteroclinic tangles and homoclinic snaking in the unfolding of a degenerate reversible Hamiltonian-Hopf bifurcation, Physica D: Nonlinear Phenomena, 129 (1999), 147-170.  doi: 10.1016/S0167-2789(98)00309-1.  Google Scholar

Figure 2.  Generic phase portraits of the 2D system (38) on the bifurcation curve $\delta :\beta _{1}+\xi _{3}^{2}=0; $ "d1" corresponds to $s=-1,$ $\theta _{0}<0,$ $ \beta _{2}<0, $ "d2" to $s=-1,$ $\theta _{0}<0,$ $\beta _{2}>0,$ "d3" to $s=-1,$ $\theta _{0}>0,$ $\beta _{2}<0,$ "d4" to $s=-1,$ $\theta _{0}>0,$ $\beta _{2}>0,$ "d5" to $ s=1,$ $\theta _{0}>0,$ $\beta _{2}>0,$ "d6" to $s=1,$ $ \theta _{0}>0,$ $\beta _{2}<0,$ "d7" to $s=1,$ $ \theta _{0}<0,$ $\beta _{2}<0$ and "d8" to $s=1,$ $\theta _{0}<0,$ $\beta_{2}>0$
Figure 1.  Generic phase portraits of the 2D system (38) at $ \alpha_1=\alpha_2=0$ and (a) $s=+1,\theta_0>0,$ (b) $s=+1, \theta_0<0,$ (c) $s=-1,\theta_0>0,$ (d) $s=-1,\theta _0<0$
Figure 3.  Generic phase portraits of the $2D$ system (38)
Figure 4.  Generic phase portraits of the $2D$ system (38)
Figure 5.  Bifurcation diagrams for: a) $\theta _{0}>0$ and $s=+1,$ (left); b) $\theta _{0}<0$ and $s=-1$ (right)
Figure 6.  Bifurcation diagrams for: a) $0<\theta _{0}\leq \frac{1}{2}$ and $s=-1,$ (left); b) $\theta _{0}>\frac{1}{2}$ and $s=-1$ (right). The generic portraits on the lines $k^{1},k^{2}$ are the same as in their neighborhood corresponding to $A_{3}$ a node, namely "nssn" for $ \alpha _{1}<0,$ respectively, "snun" for $\alpha _{1}>0$
Figure 7.  Bifurcation diagram for $\theta _{0}<0$ and $s=+1.$ The generic portraits on the lines $k^{1},k^{2}$ are the same as in their neighborhood corresponding to $A_{3}$ a node, namely "ssun" or "sssn"
Figure 8.  The point $A_3$ in 2D and its corresponding limit cycle $C$ in 3D
Figure 9.  The circle in 2D and its corresponding torus in 3D
Figure 10.  The heteroclinic orbit in 2D and its corresponding sphere in 3D
Figure 11.  Generic phase portraits of the 3D system. In all cases $ \omega_1=0.1$ and $\omega_2=-0.1$ The other numeric values are as follows: "nn" $\beta _{1}=-0.5,\beta _{2}=-0.001,$ $s=-1,$ $ \theta _{0}=1;$ "sn" $\beta _{1}=-0.01,\beta _{2}=-0.2,$ $s=1,$ $\theta _{0}=1;$ "ss" $\beta _{1}=-0.12, \beta _{2}=-0.14,$ $s=-1,$ $\theta _{0}=-1;$ "sns" $ \beta _{1}=-0.01,\beta _{2}=-0.24,$ $s=-1,$ $\theta _{0}=-1,$ "snuf" $\beta _{1}=-0.01,\beta _{2}=-0.24,$ $s=-1,$ $ \theta _{0}=1;$ "sssn" $\beta _{1}=-0.01,\beta _{2}=-0.1,$ $s=1,$ $\theta _{0}=-1$
Figure 12.  Generic phase portraits of the 3D system. In all cases $ \omega _{1}=0.1$ and $\omega _{2}=-0.1$ The other numeric values are as follows: "ssuf" $\beta _{1}=-0.01,\beta _{2}=0.02,$ $ s=1,$ $\theta _{0}=-1;$ "ssc" $\beta _{1}=-0.01, \beta _{2}=-0.002, $ $s=1,$ $\theta _{0}=-1;$ "ssh" $\beta _{1}=-0.01,\beta _{2}=-0.0028,$ $s=1,$ $\theta _{0}=-1$ and "nns" $\beta _{1}=-0.01,\beta _{2}=-0.011,$ $s=1,$ $ \theta _{0}=1$
[1]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[2]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[3]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[4]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[5]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[6]

Christian Aarset, Christian Pötzsche. Bifurcations in periodic integrodifference equations in $ C(\Omega) $ I: Analytical results and applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 1-60. doi: 10.3934/dcdsb.2020231

[7]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[8]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[9]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[10]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[11]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[12]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[13]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[14]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[15]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[16]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[17]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[18]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[19]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[20]

Michael Winkler, Christian Stinner. Refined regularity and stabilization properties in a degenerate haptotaxis system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4039-4058. doi: 10.3934/dcds.2020030

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (203)
  • HTML views (1724)
  • Cited by (5)

Other articles
by authors

[Back to Top]