• Previous Article
    Global attractor for a strongly damped wave equation with fully supercritical nonlinearities
  • DCDS Home
  • This Issue
  • Next Article
    A KAM theorem for the elliptic lower dimensional tori with one normal frequency in reversible systems
April  2017, 37(4): 2161-2180. doi: 10.3934/dcds.2017093

Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients

1. 

Yangtze Center of Mathematics, Sichuan University, Chengdu 610064, China

2. 

College of Mathematics and Physics, Chongqing, University of Posts and Telecommunications, Chongqing 400065, China

*Corresponding author: Daoyi Xu

Received  August 2015 Revised  November 2016 Published  December 2016

Fund Project: The first author is supported by National Natural Science Foundation of China grant No. 11271270 and the second author is supported by the Doctor Start-up Funding of Chongqing University of Posts and Telecommunications grant No. A2016-80.

In this paper, we study the existence-uniqueness and exponential estimate of the pathwise mild solution of retarded stochastic evolution systems driven by a Hilbert-valued Brownian motion. Firstly, the existence-uniqueness of the maximal local pathwise mild solution are given by the generalized local Lipschitz conditions, which extend a classical Pazy theorem on PDEs. We assume neither that the noise is given in additive form or that it is a very simple multiplicative noise, nor that the drift coefficient is global Lipschitz continuous. Secondly, the existence-uniqueness of the global pathwise mild solution are given by establishing an integral comparison principle, which extends the classical Wintner theorem on ODEs. Thirdly, an exponential estimate for the pathwise mild solution is obtained by constructing a delay integral inequality. Finally, the results obtained are applied to a retarded stochastic infinite system and a stochastic partial functional differential equation. Combining some known results, we can obtain a random attractor, whose condition overcomes the disadvantage in existing results that the exponential converging rate is restricted by the maximal admissible value for the time delay.

Citation: Daoyi Xu, Weisong Zhou. Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2161-2180. doi: 10.3934/dcds.2017093
References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[2]

P. W. BatesK. N. Lu and B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.

[3]

R. E. Bellman, Vector Lyapunov functions, J. Soc. Industr. Appl. Math. Ser. A Control., 1 (1962), 32-34. 

[4]

H. BessaihM. J. Garrido-Atienza and B. Schmalfuss, Pathwise solutions and attractors for retarded SPDES with time smooth diffusion cofficients, Disc. Contin. Dyn. Syst., 34 (2014), 3945-3968.  doi: 10.3934/dcds.2014.34.3945.

[5]

T. CaraballoK. Liu and A. Truman, Stochastic functional partial differential equations: Existence, uniqueness and asymptotic decay property, Proc. R. Soc. Lond. A, 456 (2000), 1775-1802.  doi: 10.1098/rspa.2000.0586.

[6]

P. L. Chow, Stochastic Partial Differential Equations, Chapman & Hall/CRC, New York, 2007.

[7]

C. CuevasE. Hernándezb and M. Rabelo, The existence of solutions for impulsive neutral functional differential equations, Comp. Math. Appl., 58 (2009), 744-757.  doi: 10.1016/j.camwa.2009.04.008.

[8]

J. Q. DuanK. N. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Prob., 31 (2003), 2109-2135.  doi: 10.1214/aop/1068646380.

[9] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1975. 
[10]

C. Geiß and R. Manthey, Comparison theorems for stochastic differential equations in finite and infinite dimensions, Stochastic Process Appl., 53 (1994), 23-35.  doi: 10.1016/0304-4149(94)90055-8.

[11]

J. K. Hale, Theorey of Functional Differential Equations, Springer-Verlag, New York, 1977.

[12]

X. Y. HanW. X. Shen and S. F. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.

[13]

P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc. , New York, 1964.

[14] H. Kunita, Stochastic Flows and Stochastic Differential Equations, University Press, Cambridge, 1990. 
[15] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, vol. Ⅱ, Academic Press, New York, 1969. 
[16]

D. S. Li and D. Y. Xu, Periodic solutions of stochastic delay differential equations and applications to Logistic equation and neural networks, J. Korean Math. Soc., 50 (2013), 1165-1181.  doi: 10.4134/JKMS.2013.50.6.1165.

[17]

X. X. Liao and X. R. Mao, Exponential stability of stochastic delay interval systems, System Control Lett., 40 (2000), 171-181.  doi: 10.1016/S0167-6911(00)00021-9.

[18]

K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Pitman Monographs Ser. Pure Appl. Math. , 135 Chapman & Hall/CRC, 2006.

[19]

S. J. LongL. Y. Teng and D. Y. Xu, Global attracting set and stability of stochastic neutral partial functional differential equations with impulses, Statistics and Probability Lett., 82 (2012), 1699-1709.  doi: 10.1016/j.spl.2012.05.018.

[20]

K. N. Lu and B. Schmalfuss, Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492.  doi: 10.1016/j.jde.2006.09.024.

[21]

X. R. Mao, Stochastic Differential Equations and Applications, 2$ ^{nd} $ edition, Horwood, Chichester, 2008. doi: 10.1533/9780857099402.

[22]

V. M. Matrosov, The comparison principle with a Lyapunov vector-function Ⅰ-Ⅳ, Differential Equations, 4 (1968), 710-717; 893-900; 5 (1969), 853-864; 1596-1607.

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[24] G. D. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK, 1992.  doi: 10.1017/CBO9780511666223.
[25]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, in Int. Seminar on Applied Mathematics Nonlinear Dynamics: Attractor Approximation and Global Behaviour (eds. V. Reitmann, T. Riedrich and N. Koksch), 1992,185-192.

[26]

T. TaniguchiK. Liu and A. Truman, Existence, uniqueness, and asymptotic behavior of mild solution to stochastic functional differential equations in Hilbert spaces, J. Differential Equations, 181 (2002), 72-91.  doi: 10.1006/jdeq.2001.4073.

[27]

L. S. WangZ. Zhang and Y. F. Wang, Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters, Phys. Lett. A, 372 (2008), 3201-3209.  doi: 10.1016/j.physleta.2007.07.090.

[28]

D. Y. Xu, Integro-differential equations and delay integral inequalities, Tohoku Math. J., 44 (1992), 365-378.  doi: 10.2748/tmj/1178227303.

[29]

D. Y. Xu, Comparison theorems and vector Ⅴ-functions for stability of discrete systems, Proceedings of the Ninth Triennial World Congress of IFAC, 3 (1985), 1479-1482. 

[30]

D. Y. XuY. M. Huang and Z. G. Yang, Existence theory for periodic Markov process and stochastic functional differential equations, Disc. Contin. Dyn. Syst., 24 (2009), 1005-1023.  doi: 10.3934/dcds.2009.24.1005.

[31]

D. Y. XuB. LiS. J. Long and L. Y. Teng, Moment estimate and existence for solutions of stochastic functional differential equations, Nonlinear Analysis, 108 (2014), 128-143.  doi: 10.1016/j.na.2014.05.004.

[32]

D. Y. XuX. H. Wang and Z. G. Yang, Existence-uniqueness problems for infinte dimensional stochastic differential equations with delays, J. Appl. Anal. Comput., 2 (2012), 449-463. 

[33]

D. Y. XuX. H. Wang and Z. G. Yang, Further results on existence-uniqueness for stochastic functional differential equation, Sci. China Math., 56 (2013), 1169-1180.  doi: 10.1007/s11425-012-4553-1.

[34]

D. Y. Xu and Z. C. Yang, Impulsive delay differential inequality and stability of neural networks, J. Math. Anal. Appl., 305 (2005), 107-120.  doi: 10.1016/j.jmaa.2004.10.040.

[35]

D. Y. XuZ. G. Yang and Y. M. Huang, Existence-uniqueness and continuation theorems for stochastic functional differential equations, J. Differential Equations, 245 (2008), 1681-1703.  doi: 10.1016/j.jde.2008.03.029.

[36]

D. Y. XuH. Y. Zhao and H. Zhu, Global dynamics of Hopfield neural networks involving variable delays, Computer Math. Appl., 42 (2001), 39-45.  doi: 10.1016/S0898-1221(01)00128-6.

[37]

X. H. ZhangK. Wang and D. S. Li, Stochastic periodic solutions of stochastic differential equations driven by Lévy process, J. Math. Anal. Appl., 430 (2015), 231-242.  doi: 10.1016/j.jmaa.2015.04.090.

[38]

H. Y. Zhao and N. Ding, Dynamic analysis of stochastic Cohen-Grossberg neural networks with time delays, Appl. Math. Comput., 183 (2006), 464-470.  doi: 10.1016/j.amc.2006.05.087.

show all references

References:
[1]

L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer Verlag, Berlin, 1998. doi: 10.1007/978-3-662-12878-7.

[2]

P. W. BatesK. N. Lu and B. X. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains, J. Differential Equations, 246 (2009), 845-869.  doi: 10.1016/j.jde.2008.05.017.

[3]

R. E. Bellman, Vector Lyapunov functions, J. Soc. Industr. Appl. Math. Ser. A Control., 1 (1962), 32-34. 

[4]

H. BessaihM. J. Garrido-Atienza and B. Schmalfuss, Pathwise solutions and attractors for retarded SPDES with time smooth diffusion cofficients, Disc. Contin. Dyn. Syst., 34 (2014), 3945-3968.  doi: 10.3934/dcds.2014.34.3945.

[5]

T. CaraballoK. Liu and A. Truman, Stochastic functional partial differential equations: Existence, uniqueness and asymptotic decay property, Proc. R. Soc. Lond. A, 456 (2000), 1775-1802.  doi: 10.1098/rspa.2000.0586.

[6]

P. L. Chow, Stochastic Partial Differential Equations, Chapman & Hall/CRC, New York, 2007.

[7]

C. CuevasE. Hernándezb and M. Rabelo, The existence of solutions for impulsive neutral functional differential equations, Comp. Math. Appl., 58 (2009), 744-757.  doi: 10.1016/j.camwa.2009.04.008.

[8]

J. Q. DuanK. N. Lu and B. Schmalfuss, Invariant manifolds for stochastic partial differential equations, Ann. Prob., 31 (2003), 2109-2135.  doi: 10.1214/aop/1068646380.

[9] A. Friedman, Stochastic Differential Equations and Applications, Academic Press, New York, 1975. 
[10]

C. Geiß and R. Manthey, Comparison theorems for stochastic differential equations in finite and infinite dimensions, Stochastic Process Appl., 53 (1994), 23-35.  doi: 10.1016/0304-4149(94)90055-8.

[11]

J. K. Hale, Theorey of Functional Differential Equations, Springer-Verlag, New York, 1977.

[12]

X. Y. HanW. X. Shen and S. F. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266.  doi: 10.1016/j.jde.2010.10.018.

[13]

P. Hartman, Ordinary Differential Equations, John Wiley & Sons, Inc. , New York, 1964.

[14] H. Kunita, Stochastic Flows and Stochastic Differential Equations, University Press, Cambridge, 1990. 
[15] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities, vol. Ⅱ, Academic Press, New York, 1969. 
[16]

D. S. Li and D. Y. Xu, Periodic solutions of stochastic delay differential equations and applications to Logistic equation and neural networks, J. Korean Math. Soc., 50 (2013), 1165-1181.  doi: 10.4134/JKMS.2013.50.6.1165.

[17]

X. X. Liao and X. R. Mao, Exponential stability of stochastic delay interval systems, System Control Lett., 40 (2000), 171-181.  doi: 10.1016/S0167-6911(00)00021-9.

[18]

K. Liu, Stability of Infinite Dimensional Stochastic Differential Equations with Applications, Pitman Monographs Ser. Pure Appl. Math. , 135 Chapman & Hall/CRC, 2006.

[19]

S. J. LongL. Y. Teng and D. Y. Xu, Global attracting set and stability of stochastic neutral partial functional differential equations with impulses, Statistics and Probability Lett., 82 (2012), 1699-1709.  doi: 10.1016/j.spl.2012.05.018.

[20]

K. N. Lu and B. Schmalfuss, Invariant manifolds for stochastic wave equations, J. Differential Equations, 236 (2007), 460-492.  doi: 10.1016/j.jde.2006.09.024.

[21]

X. R. Mao, Stochastic Differential Equations and Applications, 2$ ^{nd} $ edition, Horwood, Chichester, 2008. doi: 10.1533/9780857099402.

[22]

V. M. Matrosov, The comparison principle with a Lyapunov vector-function Ⅰ-Ⅳ, Differential Equations, 4 (1968), 710-717; 893-900; 5 (1969), 853-864; 1596-1607.

[23]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[24] G. D. Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, UK, 1992.  doi: 10.1017/CBO9780511666223.
[25]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations, in Int. Seminar on Applied Mathematics Nonlinear Dynamics: Attractor Approximation and Global Behaviour (eds. V. Reitmann, T. Riedrich and N. Koksch), 1992,185-192.

[26]

T. TaniguchiK. Liu and A. Truman, Existence, uniqueness, and asymptotic behavior of mild solution to stochastic functional differential equations in Hilbert spaces, J. Differential Equations, 181 (2002), 72-91.  doi: 10.1006/jdeq.2001.4073.

[27]

L. S. WangZ. Zhang and Y. F. Wang, Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters, Phys. Lett. A, 372 (2008), 3201-3209.  doi: 10.1016/j.physleta.2007.07.090.

[28]

D. Y. Xu, Integro-differential equations and delay integral inequalities, Tohoku Math. J., 44 (1992), 365-378.  doi: 10.2748/tmj/1178227303.

[29]

D. Y. Xu, Comparison theorems and vector Ⅴ-functions for stability of discrete systems, Proceedings of the Ninth Triennial World Congress of IFAC, 3 (1985), 1479-1482. 

[30]

D. Y. XuY. M. Huang and Z. G. Yang, Existence theory for periodic Markov process and stochastic functional differential equations, Disc. Contin. Dyn. Syst., 24 (2009), 1005-1023.  doi: 10.3934/dcds.2009.24.1005.

[31]

D. Y. XuB. LiS. J. Long and L. Y. Teng, Moment estimate and existence for solutions of stochastic functional differential equations, Nonlinear Analysis, 108 (2014), 128-143.  doi: 10.1016/j.na.2014.05.004.

[32]

D. Y. XuX. H. Wang and Z. G. Yang, Existence-uniqueness problems for infinte dimensional stochastic differential equations with delays, J. Appl. Anal. Comput., 2 (2012), 449-463. 

[33]

D. Y. XuX. H. Wang and Z. G. Yang, Further results on existence-uniqueness for stochastic functional differential equation, Sci. China Math., 56 (2013), 1169-1180.  doi: 10.1007/s11425-012-4553-1.

[34]

D. Y. Xu and Z. C. Yang, Impulsive delay differential inequality and stability of neural networks, J. Math. Anal. Appl., 305 (2005), 107-120.  doi: 10.1016/j.jmaa.2004.10.040.

[35]

D. Y. XuZ. G. Yang and Y. M. Huang, Existence-uniqueness and continuation theorems for stochastic functional differential equations, J. Differential Equations, 245 (2008), 1681-1703.  doi: 10.1016/j.jde.2008.03.029.

[36]

D. Y. XuH. Y. Zhao and H. Zhu, Global dynamics of Hopfield neural networks involving variable delays, Computer Math. Appl., 42 (2001), 39-45.  doi: 10.1016/S0898-1221(01)00128-6.

[37]

X. H. ZhangK. Wang and D. S. Li, Stochastic periodic solutions of stochastic differential equations driven by Lévy process, J. Math. Anal. Appl., 430 (2015), 231-242.  doi: 10.1016/j.jmaa.2015.04.090.

[38]

H. Y. Zhao and N. Ding, Dynamic analysis of stochastic Cohen-Grossberg neural networks with time delays, Appl. Math. Comput., 183 (2006), 464-470.  doi: 10.1016/j.amc.2006.05.087.

[1]

John A. D. Appleby, Alexandra Rodkina, Henri Schurz. Pathwise non-exponential decay rates of solutions of scalar nonlinear stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 667-696. doi: 10.3934/dcdsb.2006.6.667

[2]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4927-4962. doi: 10.3934/dcdsb.2020320

[3]

Nathan Glatt-Holtz, Roger Temam, Chuntian Wang. Martingale and pathwise solutions to the stochastic Zakharov-Kuznetsov equation with multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1047-1085. doi: 10.3934/dcdsb.2014.19.1047

[4]

Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032

[5]

Justin Cyr, Phuong Nguyen, Sisi Tang, Roger Temam. Review of local and global existence results for stochastic pdes with Lévy noise. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5639-5710. doi: 10.3934/dcds.2020241

[6]

Qi Yao, Linshan Wang, Yangfan Wang. Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4727-4743. doi: 10.3934/dcdsb.2020310

[7]

Yajing Li, Yejuan Wang. The existence and exponential behavior of solutions to time fractional stochastic delay evolution inclusions with nonlinear multiplicative noise and fractional noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2665-2697. doi: 10.3934/dcdsb.2020027

[8]

Rainer Buckdahn, Christian Keller, Jin Ma, Jianfeng Zhang. Fully nonlinear stochastic and rough PDEs: Classical and viscosity solutions. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 7-. doi: 10.1186/s41546-020-00049-8

[9]

Giuseppe Da Prato, Franco Flandoli. Some results for pathwise uniqueness in Hilbert spaces. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1789-1797. doi: 10.3934/cpaa.2014.13.1789

[10]

Bixiang Wang. Stochastic bifurcation of pathwise random almost periodic and almost automorphic solutions for random dynamical systems. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3745-3769. doi: 10.3934/dcds.2015.35.3745

[11]

Andrea L. Bertozzi, Dejan Slepcev. Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1617-1637. doi: 10.3934/cpaa.2010.9.1617

[12]

Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805

[13]

Xiaoming Fu, Quentin Griette, Pierre Magal. Existence and uniqueness of solutions for a hyperbolic Keller–Segel equation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1931-1966. doi: 10.3934/dcdsb.2020326

[14]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2553-2581. doi: 10.3934/dcdsb.2015.20.2553

[15]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[16]

Tomás Caraballo, José A. Langa, José Valero. Stabilisation of differential inclusions and PDEs without uniqueness by noise. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1375-1392. doi: 10.3934/cpaa.2008.7.1375

[17]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure and Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[18]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete and Continuous Dynamical Systems, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[19]

Jérôme Coville, Nicolas Dirr, Stephan Luckhaus. Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients. Networks and Heterogeneous Media, 2010, 5 (4) : 745-763. doi: 10.3934/nhm.2010.5.745

[20]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (126)
  • HTML views (56)
  • Cited by (3)

Other articles
by authors

[Back to Top]