April  2017, 37(4): 2207-2226. doi: 10.3934/dcds.2017095

Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth

1. 

College of Information and Management Science, Henan Agricultural University, Zhengzhou, Henan 450002, China

2. 

Department of Mathematics, Indiana University, Bloomington, IN 47408, USA

3. 

Department of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China

4. 

Department of Mathematical Science, Georgia Southern University, Statesboro, GA 30460, USA

*Corresponding author: Jinghua Yao

Received  July 2016 Revised  September 2016 Published  December 2016

Fund Project: This research is partly supported by the key projects in Science and Technology Research of the Henan Education Department (14A110011).

We investigate the followingDirichlet problem with variable exponents:
$\left\{ \begin{align} &-{{\vartriangle }_{p(x)}}u=\lambda \alpha (x)|u{{\text{ }\!\!|\!\!\text{ }}^{\alpha (x)-2}}u|v{{\text{ }\!\!|\!\!\text{ }}^{\beta (x)}}+{{F}_{u}}(x,u,v),\text{ in }\Omega , \\ &-{{\vartriangle }_{q(x)}}v=\lambda \beta (x)\text{ }\!\!|\!\!\text{ }u{{|}^{\alpha \left( x \right)}}|v{{|}^{\beta (x)\text{-2}}}v+{{F}_{v}}(x,u,v),\text{ in}\ \Omega , \\ &u=0=v,\text{ on }\partial \Omega \text{.} \\ \end{align} \right.$
We present here, in the system setting, a new set of growth conditions under which we manage to use a novel method to verify the Cerami compactness condition. By localization argument, decomposition technique and variational methods, we are able to show the existence of multiple solutions with constant sign for the problem without the well-knownAmbrosetti-Rabinowitz type growth condition. More precisely, we manage to show that the problem admitsfour, six and infinitely many solutions respectively.
Citation: Li Yin, Jinghua Yao, Qihu Zhang, Chunshan Zhao. Multiple solutions with constant sign of a Dirichlet problem for a class of elliptic systems with variable exponent growth. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2207-2226. doi: 10.3934/dcds.2017095
References:
[1]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140.  doi: 10.1007/s002050100117.

[2]

C. Alves and S. Liu, On superlinear $ p(x) $-Laplacian equations in $ R^{N} $, Nonlinear Analysis, 73 (2010), 2566-2579.  doi: 10.1016/j.na.2010.06.033.

[3] K. C. Chang, Critical Point Theory and Applications, Shanghai Scientific and Technology Press, Shanghai, 1986. 
[4]

Y. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522.

[5]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18363-8.

[6]

X. Fan and D. Zhao, On the spaces $ {{L}^{p(x)}}(\Omega \text{)} $ and $ {{W}^{m,p(x)}}\left( \Omega \right) $, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.

[7]

X. Fan and Q. Zhang, Existence of solutions for $ p(x) $-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852.  doi: 10.1016/S0362-546X(02)00150-5.

[8]

X. FanQ. Zhang and D. Zhao, Eigenvalues of $ p(x) $-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2005), 306-317.  doi: 10.1016/j.jmaa.2003.11.020.

[9]

L. Gasiński and N. Papageorgiou, A pair of positive solutions for the Dirichlet $ p(z) $-Laplacian with concave and convex nonlinearities, J. Glob. Optim., 56 (2013), 1347-1360.  doi: 10.1007/s10898-011-9841-8.

[10]

B. GeQ. Zhou and L. Zu, Positive solutions for nonlinear elliptic problems of $ p $-Laplacian type on $ \mathbb{R}^{N} $ without (AR) condition, Nonlinear Anal Real World Appl., 21 (2015), 99-109.  doi: 10.1016/j.nonrwa.2014.07.002.

[11]

O. Kováčik and J. Rákosník, On spaces $ {{L}^{p(x)}}\left( \Omega \right) $ and $ {{W}^{k,p(x)}}\left( \Omega \right) $, Czechoslovak Math. J., 41 (1991), 592-618. 

[12]

N. Lam and G. Lu, Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, J. Geom. Anal., 24 (2014), 118-143.  doi: 10.1007/s12220-012-9330-4.

[13]

M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., 135 (2007), 2929-2937.  doi: 10.1090/S0002-9939-07-08815-6.

[14]

O. Miyagaki and M. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 245 (2008), 3628-3638.  doi: 10.1016/j.jde.2008.02.035.

[15]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math 1748, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029.

[16]

V. Radulescu and D. Repovs, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Chapman and Hall/CRC, Monographs and Research Notes in Mathematics, 2015. doi: 10.1201/b18601.

[17]

X. WangJ. Yao and D. Liu, High energy solutions to $ p(x) $-Laplace equations of Schrödinger type, Electron. J. Diff. Equ., 136 (2015), 1-17. 

[18]

X. Wang and J. Yao, Compact embeddings between variable exponent spaces with unbounded underlying domain, Nonlinear Analysis: TMA, 70 (2009), 3472-3482.  doi: 10.1016/j.na.2008.07.005.

[19]

M. Willem and W. Zou, On a Schröinger equation with periodic potential and spectrum point zero, Indiana Univ. Math. J., 52 (2003), 109-132.  doi: 10.1512/iumj.2003.52.2273.

[20]

J. Yao and X. Wang, On an open problem involving the $ p(x) $-Laplacian, Nonlinear Analysis: TMA, 69 (2008), 1445-1453.  doi: 10.1016/j.na.2007.06.044.

[21]

J. Yao, Solutions for Neumann boundary value problems involving $ p(x) $-Laplace operators, Nonlinear Analysis: TMA, 68 (2008), 1271-1283.  doi: 10.1016/j.na.2006.12.020.

[22]

L. Yin, J. Yao, Q. Zhang and C. Zhao, Multiplicity of strong solutions for a class of elliptic problems without the Ambrosetti-Rabinowitz condition in $ \mathbb{R}^{N} $, arXiv: 1607.00581.

[23]

A. Zang, $ p(x) $-Laplacian equations satisfying Cerami condition, J. Math. Anal. Appl., 337 (2008), 547-555.  doi: 10.1016/j.jmaa.2007.04.007.

[24]

Q. Zhang and C. Zhao, Existence of strong solutions of a $ p(x) $-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition, Comput. Math. Appl., 69 (2015), 1-12.  doi: 10.1016/j.camwa.2014.10.022.

[25] J. Zhao, Structure Theory of Banach Spaces, Wuhan University Press, Wuhan, 1991. 
[26]

V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710. 

[27] C. ZhongX. Fan and W. Chen, Introduction to Nonlinear Functional Analysis, Lanzhou University Press, Lanzhou, 1998. 

show all references

References:
[1]

E. Acerbi and G. Mingione, Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156 (2001), 121-140.  doi: 10.1007/s002050100117.

[2]

C. Alves and S. Liu, On superlinear $ p(x) $-Laplacian equations in $ R^{N} $, Nonlinear Analysis, 73 (2010), 2566-2579.  doi: 10.1016/j.na.2010.06.033.

[3] K. C. Chang, Critical Point Theory and Applications, Shanghai Scientific and Technology Press, Shanghai, 1986. 
[4]

Y. ChenS. Levine and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383-1406.  doi: 10.1137/050624522.

[5]

L. Diening, P. Harjulehto, P. Hästö and M. Růžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, Berlin, 2011. doi: 10.1007/978-3-642-18363-8.

[6]

X. Fan and D. Zhao, On the spaces $ {{L}^{p(x)}}(\Omega \text{)} $ and $ {{W}^{m,p(x)}}\left( \Omega \right) $, J. Math. Anal. Appl., 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.

[7]

X. Fan and Q. Zhang, Existence of solutions for $ p(x) $-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852.  doi: 10.1016/S0362-546X(02)00150-5.

[8]

X. FanQ. Zhang and D. Zhao, Eigenvalues of $ p(x) $-Laplacian Dirichlet problem, J. Math. Anal. Appl., 302 (2005), 306-317.  doi: 10.1016/j.jmaa.2003.11.020.

[9]

L. Gasiński and N. Papageorgiou, A pair of positive solutions for the Dirichlet $ p(z) $-Laplacian with concave and convex nonlinearities, J. Glob. Optim., 56 (2013), 1347-1360.  doi: 10.1007/s10898-011-9841-8.

[10]

B. GeQ. Zhou and L. Zu, Positive solutions for nonlinear elliptic problems of $ p $-Laplacian type on $ \mathbb{R}^{N} $ without (AR) condition, Nonlinear Anal Real World Appl., 21 (2015), 99-109.  doi: 10.1016/j.nonrwa.2014.07.002.

[11]

O. Kováčik and J. Rákosník, On spaces $ {{L}^{p(x)}}\left( \Omega \right) $ and $ {{W}^{k,p(x)}}\left( \Omega \right) $, Czechoslovak Math. J., 41 (1991), 592-618. 

[12]

N. Lam and G. Lu, Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, J. Geom. Anal., 24 (2014), 118-143.  doi: 10.1007/s12220-012-9330-4.

[13]

M. Mihăilescu and V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., 135 (2007), 2929-2937.  doi: 10.1090/S0002-9939-07-08815-6.

[14]

O. Miyagaki and M. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 245 (2008), 3628-3638.  doi: 10.1016/j.jde.2008.02.035.

[15]

M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math 1748, Springer-Verlag, Berlin, 2000. doi: 10.1007/BFb0104029.

[16]

V. Radulescu and D. Repovs, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Chapman and Hall/CRC, Monographs and Research Notes in Mathematics, 2015. doi: 10.1201/b18601.

[17]

X. WangJ. Yao and D. Liu, High energy solutions to $ p(x) $-Laplace equations of Schrödinger type, Electron. J. Diff. Equ., 136 (2015), 1-17. 

[18]

X. Wang and J. Yao, Compact embeddings between variable exponent spaces with unbounded underlying domain, Nonlinear Analysis: TMA, 70 (2009), 3472-3482.  doi: 10.1016/j.na.2008.07.005.

[19]

M. Willem and W. Zou, On a Schröinger equation with periodic potential and spectrum point zero, Indiana Univ. Math. J., 52 (2003), 109-132.  doi: 10.1512/iumj.2003.52.2273.

[20]

J. Yao and X. Wang, On an open problem involving the $ p(x) $-Laplacian, Nonlinear Analysis: TMA, 69 (2008), 1445-1453.  doi: 10.1016/j.na.2007.06.044.

[21]

J. Yao, Solutions for Neumann boundary value problems involving $ p(x) $-Laplace operators, Nonlinear Analysis: TMA, 68 (2008), 1271-1283.  doi: 10.1016/j.na.2006.12.020.

[22]

L. Yin, J. Yao, Q. Zhang and C. Zhao, Multiplicity of strong solutions for a class of elliptic problems without the Ambrosetti-Rabinowitz condition in $ \mathbb{R}^{N} $, arXiv: 1607.00581.

[23]

A. Zang, $ p(x) $-Laplacian equations satisfying Cerami condition, J. Math. Anal. Appl., 337 (2008), 547-555.  doi: 10.1016/j.jmaa.2007.04.007.

[24]

Q. Zhang and C. Zhao, Existence of strong solutions of a $ p(x) $-Laplacian Dirichlet problem without the Ambrosetti-Rabinowitz condition, Comput. Math. Appl., 69 (2015), 1-12.  doi: 10.1016/j.camwa.2014.10.022.

[25] J. Zhao, Structure Theory of Banach Spaces, Wuhan University Press, Wuhan, 1991. 
[26]

V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, (Russian) Izv. Akad. Nauk SSSR Ser. Mat., 50 (1986), 675-710. 

[27] C. ZhongX. Fan and W. Chen, Introduction to Nonlinear Functional Analysis, Lanzhou University Press, Lanzhou, 1998. 
[1]

Elhoussine Azroul, Abdelmoujib Benkirane, and Mohammed Shimi. On a nonlocal problem involving the fractional $ p(x,.) $-Laplacian satisfying Cerami condition. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3479-3495. doi: 10.3934/dcdss.2020425

[2]

Alessio Fiscella. Schrödinger–Kirchhoff–Hardy $ p $–fractional equations without the Ambrosetti–Rabinowitz condition. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 1993-2007. doi: 10.3934/dcdss.2020154

[3]

Vincenzo Ambrosio. Periodic solutions for a superlinear fractional problem without the Ambrosetti-Rabinowitz condition. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2265-2284. doi: 10.3934/dcds.2017099

[4]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure and Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[5]

Eun Bee Choi, Yun-Ho Kim. Existence of nontrivial solutions for equations of $p(x)$-Laplace type without Ambrosetti and Rabinowitz condition. Conference Publications, 2015, 2015 (special) : 276-286. doi: 10.3934/proc.2015.0276

[6]

Lujuan Yu. The asymptotic behaviour of the $ p(x) $-Laplacian Steklov eigenvalue problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2621-2637. doi: 10.3934/dcdsb.2020025

[7]

Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 229-243. doi: 10.3934/dcdss.2021029

[8]

Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure and Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293

[9]

Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020

[10]

K. D. Chu, D. D. Hai. Positive solutions for the one-dimensional singular superlinear $ p $-Laplacian problem. Communications on Pure and Applied Analysis, 2020, 19 (1) : 241-252. doi: 10.3934/cpaa.2020013

[11]

Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4805-4821. doi: 10.3934/dcds.2021058

[12]

Umberto De Maio, Peter I. Kogut, Gabriella Zecca. On optimal $ L^1 $-control in coefficients for quasi-linear Dirichlet boundary value problems with $ BMO $-anisotropic $ p $-Laplacian. Mathematical Control and Related Fields, 2020, 10 (4) : 827-854. doi: 10.3934/mcrf.2020021

[13]

Jun Wang, Junxiang Xu, Fubao Zhang. Homoclinic orbits for superlinear Hamiltonian systems without Ambrosetti-Rabinowitz growth condition. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1241-1257. doi: 10.3934/dcds.2010.27.1241

[14]

Lauren M. M. Bonaldo, Elard J. Hurtado, Olímpio H. Miyagaki. Multiplicity results for elliptic problems involving nonlocal integrodifferential operators without Ambrosetti-Rabinowitz condition. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3329-3353. doi: 10.3934/dcds.2022017

[15]

Anis Dhifaoui. $ L^p $-strong solution for the stationary exterior Stokes equations with Navier boundary condition. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1403-1420. doi: 10.3934/dcdss.2022086

[16]

Xin-Guang Yang, Marcelo J. D. Nascimento, Maurício L. Pelicer. Uniform attractors for non-autonomous plate equations with $ p $-Laplacian perturbation and critical nonlinearities. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1937-1961. doi: 10.3934/dcds.2020100

[17]

Yao Du, Jiabao Su, Cong Wang. On the critical Schrödinger-Poisson system with $ p $-Laplacian. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1329-1342. doi: 10.3934/cpaa.2022020

[18]

Fang Liu. The eigenvalue problem for a class of degenerate operators related to the normalized $ p $-Laplacian. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2701-2720. doi: 10.3934/dcdsb.2021155

[19]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[20]

Junyong Eom, Ryuichi Sato. Large time behavior of ODE type solutions to parabolic $ p $-Laplacian type equations. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4373-4386. doi: 10.3934/cpaa.2020199

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (89)
  • HTML views (60)
  • Cited by (5)

Other articles
by authors

[Back to Top]