
-
Previous Article
Diagonal stationary points of the bethe functional
- DCDS Home
- This Issue
-
Next Article
Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations
Periodic solutions for a prescribed-energy problem of singular Hamiltonian systems
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501, Japan |
We study the existence of periodic solutions for a prescribed-energy problem of Hamiltonian systems whose potential function has a singularity at the origin like $-1/|q|^{α} (q ∈ \mathbb{R}^N)$. It is known that there exist generalized periodic solutions which may have collisions, and the number of possible collisions has been estimated. In this paper we obtain a new estimation of the number of collisions. Especially we show that the obtained solutions have no collision if $N ≥ 2$ and $α >1$.
References:
[1] |
A. Ambrosetti and V. Coti-Zelati,
Periodic Solutions of Singular Lagrangian Systems,
Birkhauser, 1993.
doi: 10.1007/978-1-4612-0319-3. |
[2] |
A. Ambrosetti and V. Coti-Zelati,
Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rational Mech. Anal., 112 (1990), 339-362.
doi: 10.1007/BF02384078. |
[3] |
H. Hofer and E. Zehnder,
Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math., 90 (1987), 1-9.
doi: 10.1007/BF01389030. |
[4] |
T. J. Hunt and R. S. MacKay,
Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor, Nonlinearity, 16 (2003), 1499-1510.
doi: 10.1088/0951-7715/16/4/318. |
[5] |
J. Milnor,
On the geometry of the Kepler problem, Amer. Math. Monthly, 90 (1983), 353-365.
doi: 10.2307/2975570. |
[6] |
R. Montgomery,
Fitting hyperbolic pants to a three-body problem, Ergodic Theory Dynam. Systems, 25 (2005), 921-947.
doi: 10.1017/S0143385704000653. |
[7] |
P. H. Rabinowitz,
Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.
doi: 10.1002/cpa.3160310203. |
[8] |
K. Tanaka,
A prescribed energy problem for a singular Hamiltonian system with a weak force, J. Funct. Anal., 113 (1993), 351-390.
doi: 10.1006/jfan.1993.1054. |
[9] |
C. Viterbo,
A proof of Weinstein's conjecture in $\mathbb{R}^{2n}$, Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 4 (1987), 337-356.
|
[10] |
A. Weinstein,
Periodic orbits for convex Hamiltonian systems, Ann. of Math. (2), 108 (1978), 507-518.
doi: 10.2307/1971185. |
show all references
References:
[1] |
A. Ambrosetti and V. Coti-Zelati,
Periodic Solutions of Singular Lagrangian Systems,
Birkhauser, 1993.
doi: 10.1007/978-1-4612-0319-3. |
[2] |
A. Ambrosetti and V. Coti-Zelati,
Closed orbits of fixed energy for singular Hamiltonian systems, Arch. Rational Mech. Anal., 112 (1990), 339-362.
doi: 10.1007/BF02384078. |
[3] |
H. Hofer and E. Zehnder,
Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math., 90 (1987), 1-9.
doi: 10.1007/BF01389030. |
[4] |
T. J. Hunt and R. S. MacKay,
Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor, Nonlinearity, 16 (2003), 1499-1510.
doi: 10.1088/0951-7715/16/4/318. |
[5] |
J. Milnor,
On the geometry of the Kepler problem, Amer. Math. Monthly, 90 (1983), 353-365.
doi: 10.2307/2975570. |
[6] |
R. Montgomery,
Fitting hyperbolic pants to a three-body problem, Ergodic Theory Dynam. Systems, 25 (2005), 921-947.
doi: 10.1017/S0143385704000653. |
[7] |
P. H. Rabinowitz,
Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31 (1978), 157-184.
doi: 10.1002/cpa.3160310203. |
[8] |
K. Tanaka,
A prescribed energy problem for a singular Hamiltonian system with a weak force, J. Funct. Anal., 113 (1993), 351-390.
doi: 10.1006/jfan.1993.1054. |
[9] |
C. Viterbo,
A proof of Weinstein's conjecture in $\mathbb{R}^{2n}$, Annales de l'institut Henri Poincaré (C) Analyse non linéaire, 4 (1987), 337-356.
|
[10] |
A. Weinstein,
Periodic orbits for convex Hamiltonian systems, Ann. of Math. (2), 108 (1978), 507-518.
doi: 10.2307/1971185. |

[1] |
Tianqing An, Zhi-Qiang Wang. Periodic solutions of Hamiltonian systems with anisotropic growth. Communications on Pure and Applied Analysis, 2010, 9 (4) : 1069-1082. doi: 10.3934/cpaa.2010.9.1069 |
[2] |
Alessandro Fonda, Andrea Sfecci. Multiple periodic solutions of Hamiltonian systems confined in a box. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1425-1436. doi: 10.3934/dcds.2017059 |
[3] |
Anna Capietto, Walter Dambrosio, Tiantian Ma, Zaihong Wang. Unbounded solutions and periodic solutions of perturbed isochronous Hamiltonian systems at resonance. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1835-1856. doi: 10.3934/dcds.2013.33.1835 |
[4] |
Jianshe Yu, Honghua Bin, Zhiming Guo. Periodic solutions for discrete convex Hamiltonian systems via Clarke duality. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 939-950. doi: 10.3934/dcds.2006.15.939 |
[5] |
Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017 |
[6] |
Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361 |
[7] |
Laura Olian Fannio. Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 251-264. doi: 10.3934/dcds.1997.3.251 |
[8] |
Liang Ding, Rongrong Tian, Jinlong Wei. Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1617-1625. doi: 10.3934/dcdsb.2018222 |
[9] |
Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024 |
[10] |
Giuseppe Cordaro. Existence and location of periodic solutions to convex and non coercive Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 983-996. doi: 10.3934/dcds.2005.12.983 |
[11] |
Juhong Kuang, Weiyi Chen, Zhiming Guo. Periodic solutions with prescribed minimal period for second order even Hamiltonian systems. Communications on Pure and Applied Analysis, 2022, 21 (1) : 47-59. doi: 10.3934/cpaa.2021166 |
[12] |
Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9 |
[13] |
V. Barbu. Periodic solutions to unbounded Hamiltonian system. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 277-283. doi: 10.3934/dcds.1995.1.277 |
[14] |
Xiao-Fei Zhang, Fei Guo. Multiplicity of subharmonic solutions and periodic solutions of a particular type of super-quadratic Hamiltonian systems. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1625-1642. doi: 10.3934/cpaa.2016005 |
[15] |
Chungen Liu, Xiaofei Zhang. Subharmonic solutions and minimal periodic solutions of first-order Hamiltonian systems with anisotropic growth. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1559-1574. doi: 10.3934/dcds.2017064 |
[16] |
Xingyong Zhang, Xianhua Tang. Some united existence results of periodic solutions for non-quadratic second order Hamiltonian systems. Communications on Pure and Applied Analysis, 2014, 13 (1) : 75-95. doi: 10.3934/cpaa.2014.13.75 |
[17] |
Yan Liu, Fei Guo. Multiplicity of periodic solutions for second-order perturbed Hamiltonian systems with local superquadratic conditions. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022098 |
[18] |
Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268 |
[19] |
Jean Mawhin. Multiplicity of solutions of variational systems involving $\phi$-Laplacians with singular $\phi$ and periodic nonlinearities. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 4015-4026. doi: 10.3934/dcds.2012.32.4015 |
[20] |
Weigao Ge, Li Zhang. Multiple periodic solutions of delay differential systems with $2k-1$ lags via variational approach. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4925-4943. doi: 10.3934/dcds.2016013 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]