\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Topological pressure for the completely irregular set of birkhoff averages

The author is supported by National Natural Science Foundation of China (grant no. 11671093, 11301088) and Specialized Research Fund for the Doctoral Program of Higher Education (No. 20130071120026).
Abstract Full Text(HTML) Related Papers Cited by
  • It is well-known that for certain dynamical systems (satisfying specification or its variants), the set of irregular points w.r.t. a continuous function $\phi$ (i.e. points with divergent Birkhoff ergodic averages observed by $\phi$ ) either is empty or carries full topological entropy (or pressure, see [6,17,36,37] etc. for example). In this paper we study the set of irregular points w.r.t. a collection $D$ of finite or infinite continuous functions (that is, points with divergent Birkhoff ergodic averages simultaneously observed by all $\phi∈D$ ) and obtain some generalized results. As consequences, these results are suitable for systems such as mixing shifts of finite type, uniformly hyperbolic diffeomorphisms, repellers and $β-$ shifts.

    Mathematics Subject Classification: 37C50, 37C45, 37B10, 37D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] F. AbdenurC. Bonatti and S. Crovisier, Nonuniform hyperbolicity of C1-generic diffeomorphisms, Israel Journal of Mathematics, 183 (2011), 1-60.  doi: 10.1007/s11856-011-0041-5.
    [2] S. AlbeverioM. Pratsiovytyi and G. Torbin, Topological and fractal properties of subsets of real numbers which are not normal, Bull. Sci. Math., 129 (2005), 615-630. 
    [3] I.-S. Baek and L. Olsen, Baire category and extremely non-normal points of invariant sets of IFS's, Discrete Contin. Dyn. Syst., 27 (2010), 935-943. 
    [4] L. Barreira, Dimension and Recurrence in Hyperbolic Dynamics, Progress in Mathematics, vol. 272, Birkhäuser, 2008.
    [5] L. Barreira and Y. B. Pesin, Nonuniform Hyperbolicity, Cambridge Univ. Press, Cambridge, 2007. doi: 10.1017/CBO9781107326026.
    [6] L. Barreira and J. Schmeling, Sets of “non-typical” points have full topological entropy and full Hausdorff dimension, Israel J. Math., 116 (2000), 29-70.  doi: 10.1007/BF02773211.
    [7] A. M. Blokh, Decomposition of dynamical systems on an interval, Uspekhi Mat. Nauk. , 38 (1983), p133. doi: 10.1070/RM1983v038n05ABEH003504.
    [8] R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc., 184 (1973), 125-136.  doi: 10.1090/S0002-9947-1973-0338317-X.
    [9] R. Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math., 94 (1972), 1-30.  doi: 10.2307/2373590.
    [10] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer, Lecture Notes in Math. , 470,1975. doi: 10.1007/BFb0081279.
    [11] J. Buzzi, Specification on the interval, Trans. Amer. Math. Soc., 349 (1997), 2737-2754. 
    [12] E. ChenT. Küpper and L. Shu, Topological entropy for divergence points, Ergodic Theory Dynam. Systems, 25 (2005), 1173-1208. 
    [13] X. Dai and Y. Jiang, Hausdorff dimensions of zero-entropy sets of dynamical systems with positive entropy, J. Stat. Phys., 120 (2005), 511-519. 
    [14] M. Dateyama, Invariant Measures for Homeomorphisms with Weak Specification, Tokyo J. of Math., 4 (1981), 389-397.  doi: 10.3836/tjm/1270215164.
    [15] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on the Compact Space, Lecture Notes in Mathematics, 1976. doi: 10.1007/BFb0082364.
    [16] Y. DongX. Tian and X. Yuan, Ergodic properties of systems with asymptotic average shadowing property, Journal of Mathematical Analysis and Applications, 432 (2015), 53-73.  doi: 10.1016/j.jmaa.2015.06.046.
    [17] D. J. FengK. S. Lau and J. Wu, Ergodic limits on the conformal repellers, Advances in Mathematics, 169 (2002), 58-91. 
    [18] J. HydeV. LaschosL. OlsenI. Petrykiewicz and A. Shaw, Iterated Cesaro averages, fre-quencies of digits and Baire category, Acta Arith., 144 (2010), 287-293. 
    [19] M. V. Jakobson, Absolutely continuous invariant measures for one-parameter families of one dimensional maps, Comm. Math. Phys., 81 (1981), 39-88.  doi: 10.1007/BF01941800.
    [20] J. Li and M. Wu, The sets of divergence points of self-similar measures are residual, J. Math. Anal. Appl., 404 (2013), 429-437.  doi: 10.1016/j.jmaa.2013.03.043.
    [21] J. Li and M. Wu, Generic property of irregular sets in systems satisfying the specificaiton property, Discrete and Continuous Dynamical Systems, 34 (2014), 635-645. 
    [22] C. LiangW. Sun and X. Tian, Ergodic properties of invariant measures for $C^{1+α}$ non-uniformly hyperbolic systems, Ergodic Theory & Dynam. Systems., 33 (2013), 560-584. 
    [23] L. Olsen, Extremely non-normal numbers, Math. Proc. Cambridge Philos. Soc., 137 (2004), 43-53.  doi: 10.1017/S0305004104007601.
    [24] L. Olsen and S. Winter, Multifractal analysis of divergence points of deformed measure theoretical Birkhoff averages Ⅱ, Bull. Sci. Math., 6 (2007), 518-558. 
    [25] Y. Pei and E. Chen, On the varational principle for the topological pressure for certain non-compact sets, Sci China Math, 53 (2010), 1117-1128. 
    [26] Ya. Pesin and B. Pitskel', Topological pressure and the variational principle for noncompact sets, Functional Anal. Appl., 18 (1984), 307-318.  doi: 10.1007/BF01083692.
    [27] C. Pfister and W. Sullivan, Large deviations estimates for dynamical systems without the specification property. application to the $β$-shifts, Nonlinearity, 18 (2005), 237-261. 
    [28] C. Pfister and W. Sullivan, On the topological entropy of saturated sets, Ergod. Th. Dynam. Sys., 27 (2007), 929-956.  doi: 10.1017/S0143385706000824.
    [29] M. Pollicott and H. Weiss, Multifractal analysis of Lyapunov exponent for continued fraction and Manneville-Pomeau transformations and applications to Diophantine approximation, Comm. Math. Phys., 207 (1999), 145-171.  doi: 10.1007/s002200050722.
    [30] D. Ruelle, Historic Behavior in Smooth Dynamical Systems, Global Analysis of Dynamical Systems (H. W. Broer, B. Krauskopf, and G. Vegter, eds. ), Bristol: Institute of Physics Publishing, 2001.
    [31] J. Schmeling, Symbolic dynamics for $β$-shifts and self-normal numbers, Ergodic Theory Dynam. Systems, 17 (1997), 675-694.  doi: 10.1017/S0143385797079182.
    [32] K. Sigmund, On dynamical systems with the specification property, Trans. Amer. Math. Soc., 190 (1974), 285-299.  doi: 10.1090/S0002-9947-1974-0352411-X.
    [33] W. Sun and X. Tian, The structure on invariant measures of $C^1$ generic diffeomorphisms, Acta Mathematica Sinica, English Series, 28 (2012), 817-824.  doi: 10.1007/s10114-011-9723-5.
    [34] F. Takens, Orbits with historic behaviour, or non-existence of averages, Nonlinearity, 21 (2008), T33-T36.  doi: 10.1088/0951-7715/21/3/T02.
    [35] F. Takens and E. Verbitskiy, On the variational principle for the topological entropy of certainnon-compact sets, Ergodic theory and dynamical systems, 23 (2003), 317-348.  doi: 10.1017/S0143385702000913.
    [36] D. Thompson, The irregular set for maps with the specification property has full topological pressure, Dyn. Syst., 25 (2009), 25-51.  doi: 10.1080/14689360903156237.
    [37] D. Thompson, Irregular sets, the $β$-transformation and the almost specification property, Transactions of the American Mathematical Society, 364 (2012), 5395-5414. 
    [38] M. Todd, Multifractal Analysis of Multimodal Maps, arXiv: 0809.1074v2, 2008.
    [39] P. Walters, Equilibrium states for $β$-transformations and related transformations, Math. Z., 159 (1978), 65-88. 
    [40] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, 2001.
  • 加载中
SHARE

Article Metrics

HTML views(439) PDF downloads(276) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return