We rephrase the conditions from the Chowla and the Sarnak conjectures in abstract setting, that is, for sequences in $\{-1,0,1\}^{{\mathbb{N}^*}}$, and introduce several natural generalizations. We study the relationships between these properties and other notions from topological dynamics and ergodic theory.
Citation: |
H. El Abdalaoui
, S. Kasjan
and M. Lemańczyk
, 0-1 sequences of the Thue-Morse type and Sarnak's conjecture, Proc. Amer. Math. Soc., 144 (2016)
, 161-176.
doi: 10.1090/proc/12683.![]() ![]() |
|
H. El Abdalaoui, J. Kulaga-Przymus, M. Lemańczyk and T. de la Rue,
The howla and the Sarnak conjectures from ergodic theory point of view (extended version), arXiv: 1410.1673.
![]() |
|
H. El Abdalaoui
, M. Lemańczyk
and T. de la Rue
, A dynamical point of view on the set of $ \mathscr{B}$-free integers, International Mathematics Research Notices, 2015 (2015)
, 7258-7286.
doi: 10.1093/imrn/rnu164.![]() ![]() ![]() |
|
T. M. Apostol,
Introduction to Analytic Number Theory
Springer-Verlag, New York-Heidelberg, 1976, Undergraduate Texts in Mathematics.
![]() ![]() |
|
F. Cellarosi
and Y. G. Sinai
, Ergodic properties of square-free numbers, J. Eur. Math. Soc., 15 (2013)
, 1343-1374.
doi: 10.4171/JEMS/394.![]() ![]() ![]() |
|
S. Chowla,
The Riemann Hypothesis and Hilbert's Tenth Problem
Mathematics and Its Applications, Vol. 4, Gordon and Breach Science Publishers, New York, 1965.
![]() ![]() |
|
H. Davenport
, On some infinite series involving arithmetical functions. Ⅱ, Quart. J. Math. Oxford, 8 (1937)
, 313-320.
doi: 10.1093/qmath/os-8.1.313.![]() ![]() |
|
T. Downarowicz
, The Choquet simplex of invariant measures for minimal flows, Israel J. Math., 74 (1991)
, 241-256.
doi: 10.1007/BF02775789.![]() ![]() ![]() |
|
T. Downarowicz, Survey of odometers and Toeplitz flows, in Algebraic and Topological Dynamics, vol. 385 of Contemp. Math. , Amer. Math. Soc. , Providence, RI, 2005, 7-37.
doi: 10.1090/conm/385/07188.![]() ![]() ![]() |
|
T. Downarowicz,
Entropy in Dynamical Systems vol. 18 of New Mathematical Monographs,
Cambridge University Press, Cambridge, 2011.
doi: 10.1017/CBO9780511976155.![]() ![]() ![]() |
|
T. Downarowicz and S. Kasjan, Odometers and Toeplitz subshifts revisited in the context of
Sarnak's conjecture, to appear in Studia Math., 229 (2015), 45-72, arXiv: 1502.02307.
![]() ![]() |
|
N. P. Fogg,
Substitutions in ynamics, rithmetics and ombinatorics vol. 1794 of Lecture Notes in Mathematics,
Springer-Verlag, Berlin, 2002, Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel.
doi: 10.1007/b13861.![]() ![]() |
|
H. Furstenberg
, Disjointness in ergodic theory, minimal sets, and a problem in iophantine approximation, Math. Systems Theory, 1 (1967)
, 1-49.
doi: 10.1007/BF01692494.![]() ![]() ![]() |
|
K. Jacobs
and M. Keane
, 0-1-sequences of Toeplitz type, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13 (1969)
, 123-131.
doi: 10.1007/BF00537017.![]() ![]() ![]() |
|
T. Kamae
, Subsequences of normal sequences, Israel J. Math., 16 (1973)
, 121-149.
doi: 10.1007/BF02757864.![]() ![]() ![]() |
|
D. Kerr
and H. Li
, Independence in topological and C*-dynamics, Math. Ann., 338 (2007)
, 869-926.
doi: 10.1007/s00208-007-0097-z.![]() ![]() ![]() |
|
D. Kwietniak
, Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts, Discrete Contin. Dyn. Syst., 33 (2013)
, 2451-2467.
doi: 10.3934/dcds.2013.33.2451.![]() ![]() ![]() |
|
K. Matomäki, M. Radziwiłł and T. Tao, Sign patterns of the iouville and Möbius functions Forum of Mathematics, Sigma 4 e14, (2016), 44 pp.
doi: 10.1017/fms.2016.6.![]() ![]() |
|
L. Mirsky
, Arithmetical pattern problems relating to divisibility by r th powers, Proc. London Math. Soc., 50 (1949)
, 497-508.
doi: 10.1112/plms/s2-50.7.497.![]() ![]() ![]() |
|
D. Ornstein
, Factors of ernoulli shifts are ernoulli shifts, Advances in Math., 5 (1970)
, 349-364 (1970).
doi: 10.1016/0001-8708(70)90009-5.![]() ![]() ![]() |
|
W. Parry,
Entropy and Generators in Ergodic Theory
W. A. Benjamin, Inc. , New York-Amsterdam, 1969.
![]() ![]() |
|
R. Peckner, Uniqueness of the measure of maximal entropy for the squarefree flow, to appear
in Israel J. Math., 210 (2015), 335-357, arXiv: 1205.2905.
doi: 10.1007/s11856-015-1255-8.![]() ![]() ![]() |
|
P. Sarnak,
Three lectures on the Möbius function, randomness and dynamics,
http://publications.ias.edu/sarnak/.
![]() |
|
P. C. Shields,
The Ergodic Theory of Discrete Sample Paths
vol. 13 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1996.
doi: 10.1090/gsm/013.![]() ![]() |
|
T. Tao,
The howla conjecture and the Sarnak conjecture,
What's new (blog) http://terrytao.wordpress.com/2012/10/14/the-chowla-conjecture-and-the-sarnak-conjecture.
![]() |
|
J.-P. Thouvenot
, Une classe de systémes pour lesquels la conjecture de insker est vraie, Israel J. Math., 21 (1975)
, 208-214, Conference on Ergodic Theory and Topological Dynamics (Kibbutz Lavi, 1974).
doi: 10.1007/BF02760798.![]() ![]() ![]() |
|
E. C. Titchmarsh,
The Theory of the iemann Zeta-function
2nd edition, The Clarendon Press Oxford University Press, New York, 1986, Edited and with a preface by D. R. Heath-Brown.
![]() ![]() |
|
P. Walters,
An Introduction to Ergodic Theory
vol. 79 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1982.
![]() ![]() |
|
B. Weiss,
Normal sequences as collectives,
in Proc. Symp. on Topological Dynamics and ergodic theory Univ. of Kentucky, 1971.
![]() |
|
B. Weiss,
Single Orbit Dynamics vol. 95 of CBMS Regional Conference Series in Mathematics,
American Mathematical Society, Providence, RI, 2000.
![]() ![]() |
|
S. Williams
, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete, 67 (1984)
, 95-107.
doi: 10.1007/BF00534085.![]() ![]() ![]() |
Sturmian sequence