We study continuum-wise expansive flows with fixed points on metric spaces and low dimensional manifolds. We give sufficient conditions for a surface flow to be singular cw-expansive and examples showing that cw-expansivity does not imply expansivity. We also construct a singular Axiom A vector field on a three-manifold being singular cw-expansive and with a Lorenz attractor and a Lorenz repeller in its non-wandering set.
Citation: |
D. V. Anosov
, Geodesic flows on closed Riemannian manifolds of negative curvature, Trudy Mat. Inst. Steklov., 90 (1967)
, 209pp.
![]() ![]() |
|
S. Kh. Aranson
, G. R. Belitsky
and E. V. Zhuzhoma
, Introduction to the Qualitative Theory of Dynamical Systems on Surfaces, Translations of Mathematical Monographs AMS, 153 (1996)
.
![]() ![]() |
|
V. Araújo and M. J. Pacífico, Three-Dimensional Flows, Springer-Verlag Berlin Heidelberg, 2010.
doi: 10.1007/978-3-642-11414-4.![]() ![]() ![]() |
|
A. Artigue
, Expansive flows of surfaces, Discrete and Continuous Dynamical Systems, 33 (2013)
, 505-525.
doi: 10.3934/dcds.2013.33.505.![]() ![]() ![]() |
|
A. Artigue
, Expansive flows of the three sphere, Differential Geometry and its Applications, 41 (2015)
, 91-101.
doi: 10.1016/j.difgeo.2015.04.006.![]() ![]() ![]() |
|
A. Artigue
, Robustly N-expansive surface diffeomorphisms, Discrete and Continuous Dynamical Systems, 36 (2016)
, 2367-2376.
doi: 10.3934/dcds.2016.36.2367.![]() ![]() ![]() |
|
A. Artigue
, Kinematic expansive flows, Ergodic Theory and Dynamical Systems, 36 (2016)
, 390-421.
doi: 10.1017/etds.2014.65.![]() ![]() ![]() |
|
R. Bowen
and P. Walters
, Expansive one-parameter flows, J. Differential Equations, 12 (1972)
, 180-193.
doi: 10.1016/0022-0396(72)90013-7.![]() ![]() ![]() |
|
W. Cordeiro,
Fluxos CW-expansivos Thesis, UFRJ, Brazil, 2015.
![]() |
|
L. W. Flinn,
Expansive Flows University of Warwick, Thesis, 1972.
![]() |
|
J. Franks
and B. Williams
, Anomalous Anosov Flows, Lecture Notes in Mathematics, 12 (1980)
, 158-174.
![]() ![]() |
|
L. F. He
and G. Z. Shan
, The nonexistence of expansive flow on a compact 2-manifold, Chinese Ann. Math. Ser. B, 12 (1991)
, 213-218.
![]() ![]() |
|
H. Kato
, Continuum-wise expansive homeomorphisms, Canad. J. Math., 45 (1993)
, 576-598.
doi: 10.4153/CJM-1993-030-4.![]() ![]() ![]() |
|
M. Komuro, Expansive properties of Lorenz attractors, The theory of dynamical systems and its applications to nonlinear problems, (Kyoto, 1984), World Sci. Publishing, Singapore, 1984, 4-26.
![]() ![]() |
|
J. L. Massera
, The meaning of stability, Bol. Fac. Ingen. Agrimens. Montevideo, 8 (1964)
, 405-429.
![]() ![]() |
|
C. A. Morales
, A generalization of expansivity, Disc. and Cont. Dyn. Sys., 32 (2012)
, 293-301.
doi: 10.3934/dcds.2012.32.293.![]() ![]() ![]() |
|
M. Paternain
, Expansive flows and the fundamental group, Bull. Braz. Math. Soc., 24 (1993)
, 179-199.
doi: 10.1007/BF01237676.![]() ![]() ![]() |
|
C. Robinson
, Differentiability of the stable foliation for the model Lorenz equations, Lecture Notes in Mathematics, 898 (1981)
, 302-315.
![]() ![]() |
|
L. S. Young
, Entropy of continuous flows on compact 2-manifolds, Topology, 16 (1977)
, 469-471.
doi: 10.1016/0040-9383(77)90053-2.![]() ![]() ![]() |
Classical geometric model of the Lorenz attractor.
Topological model of the Lorenz attractor.
The cylinder
The genus two surface S transverse to the flow and containing the Lorenz attractor.
A singular point of the stable foliation appears in