In this work we consider the global asymptotic stability of pushed traveling fronts for one-dimensional monostable reaction-diffusion equations with monotone delayed reactions. Pushed traveling front is a special type of critical wave front which converges to zero more rapidly than the near non-critical wave fronts. Recently, Trofimchuk et al. [
Citation: |
O. Bonnefona
, J. Garniera
, F. Hamel
and L. Roques
, Inside dynamics of delayed traveling waves, Math. Model. Nat. Phenom., 8 (2013)
, 42-59.
doi: 10.1051/mmnp/20138305.![]() ![]() ![]() |
|
X. Chen
, Existence, uniqueness, and asymptotic stability of travelling waves in nonlocal
evolution equations, Adv. Differential Equations, 2 (1997)
, 125-160.
![]() ![]() |
|
J. Garnier
, T. Giletti
, F. Hamel
and L. Roques
, Inside dynamics of pulled and pushed fronts, J. Math. Pures Appl., 98 (2012)
, 428-449.
doi: 10.1016/j.matpur.2012.02.005.![]() ![]() ![]() |
|
S. A. Gourley and J. Wu, Delayed nonlocal diffusive systems in biological invasion and disease spread, in "Nonlinear Dynamics and Evolution Equations", Fields Inst. Commun. , Amer. Math. Soc. , Providence, RI, 48 (2006), 137-200.
![]() ![]() |
|
X. Hou
and Y. Li
, Local stability of traveling wave solutions of nonlinear reaction-diffusion
equations, Discrete Contin. Dyn. Syst., 15 (2006)
, 681-701.
doi: 10.3934/dcds.2006.15.681.![]() ![]() ![]() |
|
X. Liang
and X.-Q. Zhao
, Asymptotic speeds of spread and traveling waves for monotone
semiflows with applications, Comm. Pure Appl. Math., 60 (2007)
, 1-40.
doi: 10.1002/cpa.20154.![]() ![]() ![]() |
|
C. K. Lin
and M. Mei
, On travelling wavefronts of the Nicholson's blowflies equation with
diffusion, Proc. Roy. Soc. Edinburgh, 140 (2010)
, 135-152.
doi: 10.1017/S0308210508000784.![]() ![]() ![]() |
|
S. Ma
and X.-Q. Zhao
, Global asymptotic stability of minimal fronts in monostable lattice
equations, Discrete Contin. Dyn. Syst., 21 (2008)
, 259-275.
doi: 10.3934/dcds.2008.21.259.![]() ![]() ![]() |
|
M. Mei
, C. K. Lin
, C. T. Lin
and J. W. H. So
, Traveling wavefronts for time-delayed reactiondiffusion equation: Ⅰ local nonlinearity, J. Differential Equations, 247 (2009)
, 495-510.
doi: 10.1016/j.jde.2008.12.026.![]() ![]() |
|
M. Mei
, C. K. Lin
, C. T. Lin
and J. W. H. So
, Traveling wavefronts for time-delayed reactiondiffusion equation: Ⅱ nonlocal nonlinearity, J. Differential Equations, 247 (2009)
, 511-529.
doi: 10.1016/j.jde.2008.12.020.![]() ![]() ![]() |
|
J. D. Murray,
Mathematical Biology Springer, Berlin, 1989.
doi: 10.1007/978-3-662-08539-4.![]() ![]() ![]() |
|
K. W. Schaaf
, Asymptotic behavior and traveling wave solutions for parabolic functional
differential equations, Trans. Amer. Math. Soc., 302 (1987)
, 587-615.
doi: 10.2307/2000859.![]() ![]() ![]() |
|
H. L. Smith
and X.-Q. Zhao
, Global asymptotic stability of traveling waves in delayed reactiondiffusion equations, SIAM J. Math. Anal., 31 (2000)
, 514-534.
doi: 10.1137/S0036141098346785.![]() ![]() ![]() |
|
A. Solar
and S. Trofimchuk
, Asymptotic convergence to pushed wavefronts in a monostable
equation with delayed reaction, Nonlinearity, 28 (2015)
, 2027-2052.
doi: 10.1088/0951-7715/28/7/2027.![]() ![]() ![]() |
|
A. Solar
and S. Trofimchuk
, Speed selection and stability of wavefronts for delayed monostable
reaction-diffusion equations, J. Dynam. Differential Equations, 28 (2016)
, 1265-1292.
doi: 10.1007/s10884-015-9482-6.![]() ![]() ![]() |
|
E. Trofimchuk
, M. Pinto
and S. Trofimchuk
, Pushed traveling fronts in monostable equations
with monotone delayed reaction, Discrete Contin. Dyn. Syst., 33 (2013)
, 2169-2187.
doi: 10.3934/dcds.2013.33.2169.![]() ![]() ![]() |
|
Z. C. Wang
, W. T. Li
and S. Ruan
, Traveling wave fronts in reaction-diffusion systems with
spatio-temporal delays, J. Differential Equations, 222 (2006)
, 185-232.
doi: 10.1016/j.jde.2005.08.010.![]() ![]() ![]() |
|
Z. C. Wang
, W. T. Li
and S. Ruan
, Existence and stability of traveling wave fronts in reaction
advection diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007)
, 153-200.
doi: 10.1016/j.jde.2007.03.025.![]() ![]() ![]() |
|
Z. C. Wang
, W. T. Li
and S. Ruan
, Travelling fronts in monostable equations with nonlocal
delayed effects, J. Dynam. Differential Equations, 20 (2008)
, 573-607.
doi: 10.1007/s10884-008-9103-8.![]() ![]() ![]() |
|
J. Wu,
Theory and Applications of Partial Functional Differential Equations Springer, New York, 1996.
doi: 10.1007/978-1-4612-4050-1.![]() ![]() ![]() |
|
Y. Wu
and X. Xing
, Stability of traveling waves with critical speeds for p-degree Fisher-type
equations, Discrete Contin. Dyn. Syst, 20 (2008)
, 1123-1139.
doi: 10.3934/dcds.2008.20.1123.![]() ![]() ![]() |
|
J. Wu
and X. Zou
, Travelling wave fronts of reaction-diffusion systems with delay, J. Dynam. Differential Equations, 13 (2001)
, 651-687.
doi: 10.1023/A:1016690424892.![]() ![]() ![]() |
|
S. L. Wu
, W. T. Li
and S. Y. Liu
, Exponential stability of traveling fronts in monostable
reaction-advection-diffusion equations with non-local delay, Discrete Cont. Dyn. Syst., Ser. B, 17 (2012)
, 347-366.
doi: 10.3934/dcdsb.2012.17.347.![]() ![]() |