Globally exponential $κ-$dissipativity, a new concept of dissipativity for semigroups, is introduced. It provides a more general criterion for the exponential attraction of some evolutionary systems. Assuming that a semigroup $\{S(t)\}_{t≥q 0}$ has a bounded absorbing set, then $\{S(t)\}_{t≥q 0}$ is globally exponentially $κ-$dissipative if and only if there exists a compact set $\mathcal{A}^*$ that is positive invariant and attracts any bounded subset exponentially. The set $\mathcal{A}^*$ need not be finite dimensional. This result is illustrated with an application to a damped semilinear wave equation on a bounded domain.
Citation: |
A. V. Babin
and B. Nicolaenko
, Exponential attractors of reaction-diffusion systems in an unbounded domain, Journal of Dynamics and Differential Equations, 7 (1995)
, 567-590.
doi: 10.1007/BF02218725.![]() ![]() ![]() |
|
A. V. Babin and M. I. Vishik,
Attractor of Evolution Equations North-Holland Publishing Co. , Amsterdam, 1992.
![]() ![]() |
|
I. Chueshov and I. Lasiecka, Long-time behavior of second evolution equations with nonlinear damping Memoirs Amer. Math. Soc. 195 (2008), ⅷ+183 pp.
doi: 10.1090/memo/0912.![]() ![]() ![]() |
|
P. Constantin, C. Foias, B. Nicolaenko and R. Temam,
Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4612-3506-4.![]() ![]() ![]() |
|
K. Deimling,
Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985.
doi: 10.1007/978-3-662-00547-7.![]() ![]() ![]() |
|
L. Dung
and B. Nicolaenko
, Exponential attractors in Banach spaces, Journal of Dynamics and Differential Equations, 13 (2001)
, 791-806.
doi: 10.1023/A:1016676027666.![]() ![]() ![]() |
|
A. Eden, C. Foias, B. Nicolaenko and R. Temam,
Exponential Attractors for Dissipative Evolution Equations John Wiley & Sons, New-York, 1994.
![]() ![]() |
|
M. Efendiev
and A. Miranville
, Finite dimensional attractors for a class of reaction-diffusion equations in Rn with a strong nonlinearity, Discrete and Continuous Dynamical Systems, 5 (1999)
, 399-424.
doi: 10.3934/dcds.1999.5.399.![]() ![]() ![]() |
|
M. Efendiev
, A. Miranville
and S. Zelik
, Exponential attractors for a nonlinear reaction-diffusion system in R3, Comptes Rendus de l'Académie des Sciences -Series I, 330 (2000)
, 713-718.
![]() |
|
M. Efendiev
, A. Miranville
and S. Zelik
, Exponential attractors for a singularly perturbed Cahn-Hilliard system, Mathematische Nachrichten, 272 (2004)
, 11-31.
doi: 10.1002/mana.200310186.![]() ![]() ![]() |
|
M. Efendiev
, A. Miranville
and S. Zelik
, Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. Roy. Soc. London Series, 460 (2004)
, 1107-1129.
doi: 10.1098/rspa.2003.1182.![]() ![]() ![]() |
|
P. Fabrie
, C. Galusinski
and A. Miranville
, Uniform inertial sets for damped wave equations, Discrete and Continuous Dynamical Systems, 6 (2000)
, 393-418.
doi: 10.3934/dcds.2000.6.393.![]() ![]() ![]() |
|
C. Foias
and E. Olson
, Finite fractal dimension and Hölder-Lipschitz parametrization, Indiana University Mathematics Journal, 45 (1996)
, 603-616.
doi: 10.1512/iumj.1996.45.1326.![]() ![]() ![]() |
|
C. Foias
, G. R. Sell
and R. Temam
, Inertial manifolds for nonlinear evolutionary equations, Journal of Differential Equations, 73 (1988)
, 309-353.
doi: 10.1016/0022-0396(88)90110-6.![]() ![]() ![]() |
|
S. Gatti
, M. Grasselli
, V. Pata
and M. Squassina
, Robust exponential attractors for a family of nonconserved phase-field systems with memory, Discrete and Continuous Dynamical Systems, 12 (2005)
, 1019-1029.
doi: 10.3934/dcds.2005.12.1019.![]() ![]() ![]() |
|
J. Hale,
Asymptotic Behavior of Dissipative Systems AMS, Providence, RJ, 1988.
![]() ![]() |
|
B. R. Hunt
and V. Y. Kaloshin
, Regularity of embbeddings of infinite-dimensional fractal sets into finite-dimensional spaces, Nonlinearity, 12 (1999)
, 1263-1275.
doi: 10.1088/0951-7715/12/5/303.![]() ![]() ![]() |
|
Q. F. Ma
, S. H. Wang
and C. K. Zhong
, Necessary and sufficient conditions for the existence of global attractors for semigroups and applications, Indiana University Mathematics Journal, 51 (2002)
, 1541-1559.
doi: 10.1512/iumj.2002.51.2255.![]() ![]() ![]() |
|
J. Malek
and D. Prazak
, Large time behavior by the method of l-trajectories, Journal of Differential Equations, 181 (2002)
, 243-279.
doi: 10.1006/jdeq.2001.4087.![]() ![]() ![]() |
|
R. Mane, On the dimension of the compact invariant sets of certain non-linear maps, dynamical systems and turbulence, Springer Lecture Notes in Mathematics, Springer-Verlag, Heidelberg, 898 (1981), 230-242.
![]() ![]() |
|
A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, vol. Ⅳ, Elsevier, Amsterdam, (2008), 103-200.
doi: 10.1016/S1874-5717(08)00003-0.![]() ![]() ![]() |
|
V. Pata
and M. Squassina
, On the strongly damped wave equation, Communications in Mathematical Physics, 253 (2005)
, 511-533.
doi: 10.1007/s00220-004-1233-1.![]() ![]() ![]() |
|
D. Prazak
, A necessary and sufficient condition for the existence of an exponential attractor, Central European Journal of Mathematics, 1 (2003)
, 411-417.
doi: 10.2478/BF02475219.![]() ![]() ![]() |
|
J. C. Robinson,
Infinite-dimensional Dynamical Systems Cambridge University Press, Cambridge, 2002.
doi: 10.1007/978-94-010-0732-0.![]() ![]() ![]() |
|
J. C. Robinson
, Linear embeddings of finite-dimensional subsets of Banach spaces into Euclidean spaces, Nonlinearity, 22 (2009)
, 711-728.
doi: 10.1088/0951-7715/22/4/001.![]() ![]() ![]() |
|
G. R. Sell and Y. You,
Dynamics of Evolutionary Equations Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-5037-9.![]() ![]() ![]() |
|
M. Struwe,
Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems 3rd ed. Springer-Verlag, Berlin, 1990.
doi: 10.1007/978-3-662-02624-3.![]() ![]() ![]() |
|
C. Y. Sun
, M. H. Yang
and C. K. Zhong
, Global attractors for the wave equation with nonlinear damping, Journal of Differential Equations, 227 (2006)
, 427-443.
doi: 10.1016/j.jde.2005.09.010.![]() ![]() ![]() |
|
R. Temam,
Infinite-Dimensional Systems in Mechanics and Physics Springer-Verlag, New York, 1997.
![]() |
|
S. Zelik
, The attractor for a nonlinear reaction-diffusion system in the unbounded domain and Kolmogorov's A-entropy, Mathematische Nachrichten, 232 (2001)
, 129-179.
doi: 10.1002/1522-2616(200112)232:1<129::AID-MANA129>3.0.CO;2-T.![]() ![]() ![]() |
|
C. K. Zhong
and W. S. Niu
, On the Z2-index of the global attractor for a class of p-Laplacian equations, Nonlinear Analysis, 73 (2010)
, 3698-3704.
doi: 10.1016/j.na.2010.07.022.![]() ![]() ![]() |
|
C. K. Zhong
, C. Y. Sun
and M. F. Niu
, On the existence of global attractor for a class of infinite dimensional dissipative nonlinear dynamical systems, Chinese Annals of Mathematics, Series B, 26 (2005)
, 393-400.
doi: 10.1142/S0252959905000312.![]() ![]() |
|
C. K. Zhong
, M. H. Yang
and C. Y. Sun
, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations, Journal of Differential Equations, 223 (2006)
, 367-399.
doi: 10.1016/j.jde.2005.06.008.![]() ![]() |
|
Y. S. Zhong
and C. K. Zhong
, Exponential attractors for semigroups in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 75 (2012)
, 1799-1809.
doi: 10.1016/j.na.2011.09.020.![]() ![]() ![]() |