\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a definition of Morse-Smale evolution processes

  • * Corresponding author: Carlos Rocha

    * Corresponding author: Carlos Rocha

This work was partially supported by FCT/Portugal through the project UID/MAT/04459/2013 and FAPESP thematic project 2015/21049-3

Abstract Full Text(HTML) Figure(2) Related Papers Cited by
  • In this paper we consider a definition of Morse-Smale evolution process that extends the notion of Morse-Smale dynamical system to the nonautonomous framework. In particular we consider nonautonomous perturbations of autonomous systems. In this case our definition of Morse-Smale evolution process holds for perturbations of Morse-Smale autonomous systems with or without periodic orbits. We establish that small nonautonomous perturbations of autonomous Morse-Smale evolution processes derived from certain nonautonomous differential equations are Morse-Smale evolution processes. We apply our results to examples of scalar parabolic semilinear differential equations generating evolution processes and possessing periodic orbits.

    Mathematics Subject Classification: Primary: 37B55, 35B41; Secondary: 35B10, 37B20, 37B35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Phase portrait of the autonomous equation (10) for $\delta>0$ .

    Figure 2.  Recurrent behavior for $\xi=(t, z(t))$ . Here $t_+-\bar t>\overline T$ and $\bar{t}-t_->\overline T$ .

  • [1] S. Angenent and B. Fiedler, The dynamics of rotating waves in scalar reaction diffusion equations, Trans. Amer. Math. Soc., 307 (1988), 545-568.  doi: 10.1090/S0002-9947-1988-0940217-X.
    [2] L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, Lecture Notes in Math. 1926, Springer, 2008. doi: 10.1007/978-3-540-74775-8.
    [3] N. N. Bogoliubov and Y. A. Mitropolski, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, 1961.
    [4] M. BortolanA. N. Carvalho and J. A. Langa, Structure of attractors for skew product semiflows, J. Differential Equations, 257 (2014), 490-522.  doi: 10.1016/j.jde.2014.04.008.
    [5] A. N. Carvalho and J. A. Langa, Non-autonomous perturbation of autonomous semilinear differential equations: Continuity of local stable and unstable manifolds, J. Differential Equations, 233 (2007), 622-653.  doi: 10.1016/j.jde.2006.08.009.
    [6] A. N. Carvalho and J. A. Langa, An extention of the concept of gradient semigroups which is stable under perturbation, J. Differential Equations, 246 (2009), 2646-2668.  doi: 10.1016/j.jde.2009.01.007.
    [7] A. N. CarvalhoJ. A. Langa and J. C. Robinson, Structure and bifurcation of pullback attractors in a non-autonomous Chafee-Infante equation, Proc. Amer. Math. Soc., 140 (2012), 2357-2373.  doi: 10.1090/S0002-9939-2011-11071-2.
    [8] A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-dimensional Nonautonomous Dynamical Systems, Applied Math. Sciences, 182, Springer, New York, 2013. doi: 10.1007/978-1-4614-4581-4.
    [9] A. N. CarvalhoJ. A. Langa and J. C. Robinson, Non-autonomous dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 703-747.  doi: 10.3934/dcdsb.2015.20.703.
    [10] A. N. CarvalhoJ. A. LangaJ. C. Robinson and Su′arez A., Characterization of nonautonomous attractors of a perturbed gradient system, J. Differential Equations, 236 (2007), 570-603.  doi: 10.1016/j.jde.2007.01.017.
    [11] V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, Colloquium Publications 49, American Mathematical Society, Providence, R. I. , 2002.
    [12] C. Chicone and Y. Latushkin, Center manifolds for infinite dimensional nonautonomous differential equations, J. Differential Equations, 141 (1997), 356-399.  doi: 10.1006/jdeq.1997.3343.
    [13] J. W. Cholewa and T. Dlotko, Global Attractors in Abstract Parabolic Problems, London Mathematical Society, Lecture Note Series 278, Cambridge University Press, Cambridge, 2000. doi: 10.1017/CBO9780511526404.
    [14] N. S.-Chow and K. Lu, Invariant manifolds for flows in Banach spaces, J. Differential Equations, 74 (1988), 285-317.  doi: 10.1016/0022-0396(88)90007-1.
    [15] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics 38, American Mathematical Society, Providence, R. I. , 1978.
    [16] W. A. Coppel and K. J. Palmer, Averaging and integral manifolds, Bull. Austral. Math. Soc., 2 (1970), 197-222.  doi: 10.1017/S0004972700041812.
    [17] R. Czaja and C. Rocha, Transversality in scalar reaction-diffusion equations on a circle, J. Differential Equations, 245 (2008), 692-721.  doi: 10.1016/j.jde.2008.01.018.
    [18] N. Fenichel, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971), 193-226.  doi: 10.1512/iumj.1972.21.21017.
    [19] B. FiedlerC. Rocha and M. Wolfrum, Heteroclinic orbits between rotating waves of semilinear parabolic equations on the circle, J. Differential Equations, 201 (2004), 99-138.  doi: 10.1016/j.jde.2003.10.027.
    [20] J. K. Hale, Integral manifolds of perturbed differential systems, Ann. Math., 73 (1961), 496-531.  doi: 10.2307/1970314.
    [21] J. K. Hale, Oscillations in Nonlinear Systems, Dover Publications, Inc., New York, 1992. Originally published by McGraw-Hill, New York, 1963.
    [22] J. K. Hale, Ordinary Differential Equations, 2nd edition, Robert E. Krieger Publishing Co. , Inc. , Huntington, N. Y. , 1980.
    [23] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs 25, American Mathematical Society, Providence, R. I. , 1988.
    [24] J. K. Hale, L. T. Magalh˜aes and W. M. Oliva, Dynamics in Infinite Dimensions, Second Edition, Applied Math. Sciences 47, Springer 2002. doi: 10.1007/b100032.
    [25] D. Henry, Geometric Theory of Semilinear Equations, Lecture Notes in Math. 840, SpringerVerlag, 1981.
    [26] D. Henry, Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations, J. Differential Equations, 59 (1985), 165-205.  doi: 10.1016/0022-0396(85)90153-6.
    [27] M. W. Hirsch, C. C. Pugh and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583, Springer-Verlag, 1977.
    [28] R. Joly and G. Raugel, Generic hyperbolicity of equilibria and periodic orbits of the parabolic equation on the circle, Trans. Amer. Math. Soc., 362 (2010), 5189-5211.  doi: 10.1090/S0002-9947-2010-04890-1.
    [29] R. Joly and G. Raugel, Morse-Smale property for the parabolic equation on the circle, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 27 (2010), 1397-1440.  doi: 10.1016/j.anihpc.2010.09.001.
    [30] P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs 176, American Mathematical Society, Providence, R. I. , 2011. doi: 10.1090/surv/176.
    [31] S. G. Kryzhevich and V. A. Pliss, Structural stability of nonautonomous systems, Differential Equations, 39 (2003), 1395-1403.  doi: 10.1023/B:DIEQ.0000017913.79915.b1.
    [32] W. M. Oliva, Morse-Smale semiflows, openness and A-stability, Fields Inst. Comm., 31 (2002), 285-307. 
    [33] J. Palis, On Morse-Smale dynamical systems, Topology, 8 (1969), 305-404.  doi: 10.1016/0040-9383(69)90024-X.
    [34] J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, SpringerVerlag, 1982.
    [35] V. Pliss and G. R. Sell, Perturbations of attractors of differential equations, J. Differential Equations, 92 (1991), 100-124.  doi: 10.1016/0022-0396(91)90066-I.
    [36] R. J. Sacker, A perturbation theorem for invariant manifolds and Hölder continuity, J. Math. Mech., 18 (1969), 705-762. 
    [37] G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002. doi: 10.1007/978-1-4757-5037-9.
    [38] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences 68, Springer, New York, 1988. doi: 10.1007/978-1-4684-0313-8.
    [39] M. Urabe, Nonlinear Autonomous Oscillations, Mathematics in Science and Engineering 34, Academic Press, New York, 1967.
    [40] A. Vanderbauwhede and G. Iooss, Center manifold theory in infinite dimensions, Dynam. Report. , (N. S. ) 1, Springer (1992), 125-163.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(442) PDF downloads(131) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return