• Previous Article
    Dynamical properties of nonautonomous functional differential equations with state-dependent delay
  • DCDS Home
  • This Issue
  • Next Article
    Existence of SRB measures for a class of partially hyperbolic attractors in banach spaces
August  2017, 37(7): 3921-3938. doi: 10.3934/dcds.2017165

Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows

1. 

School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

2. 

College of Science, Northeast Electric Power University, Jilin 132013, China

3. 

School of Mathematics, Liaoning University, Shenyang 110036, China

* Corresponding author: S. Zheng

Received  July 2015 Revised  February 2017 Published  April 2017

This paper studies the local existence of strong solutions to the Cauchy problem of the 2D simplified Ericksen-Leslie system modeling compressible nematic liquid crystal flows, coupled via $ρ$ (the density of the fluid), $u$ (the velocity of the field), and $d$ (the macroscopic/continuum molecular orientations). Notice that the technique used for the corresponding 3D local well-posedness of strong solutions fails treating the 2D case, because the $L^p$-norm ($p>2$) of the velocity $u$ cannot be controlled in terms only of $ρ^{\frac{1}{2}}u$ and $\nabla u$ here. In the present paper, under the framework of weighted approximation estimates introduced in [J. Li, Z. Liang, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl. (2014) 640-671] for Navier-Stokes equations, we obtain the local existence of strong solutions to the 2D compressible nematic liquid crystal flows.

Citation: Yang Liu, Sining Zheng, Huapeng Li, Shengquan Liu. Strong solutions to Cauchy problem of 2D compressible nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3921-3938. doi: 10.3934/dcds.2017165
References:
[1]

S. DingJ. LinC. Wang and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.  doi: 10.3934/dcds.2012.32.539.

[2]

S. DingC. Wang and H. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357-371.  doi: 10.3934/dcdsb.2011.15.357.

[3]

J. Ericksen, Hydrostatic theory of liquid crystal, Arch. Ration. Mech. Anal., 9 (1962), 371-378.  doi: 10.1007/BF00253358.

[4]

P. Gennes de, The Physics of Liquid Crystals, Oxford, 1974.

[5]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.  doi: 10.1007/s00021-009-0006-1.

[6]

T. HuangC. Wang and H. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.  doi: 10.1016/j.jde.2011.07.036.

[7]

T. HuangC. Wang and H. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Rational Mech. Anal., 204 (2012), 285-311.  doi: 10.1007/s00205-011-0476-1.

[8]

X. Huang and Y. Wang, A Serrin criterion for compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 36 (2013), 1363-1375.  doi: 10.1002/mma.2689.

[9]

F. JiangS. Jiang and D. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.  doi: 10.1016/j.jfa.2013.07.026.

[10]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.

[11]

J. Li, Z. Xu and J. Zhang, Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows, preprint, arXiv: 1204.4966v1.

[12]

J. Li and Z. Liang, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014), 640-671.  doi: 10.1016/j.matpur.2014.02.001.

[13]

L. Li, Q. Liu and X. Zhong, Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, preprint, arXiv: 1508.00235v1.

[14]

F. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.

[15]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.

[16]

F. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., 2 (1996), 1-22.  doi: 10.3934/dcds.1996.2.1.

[17]

F. Lin and C. Wang, The Analysis of Harmonic Maps and Their Heat Flows, Hackensack: World Scientific Publishing Co. Pte. Ltd. , 2008. doi: 10.1142/9789812779533.

[18]

F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals Philos. Trans. R. Soc. Lond. Ser. A, 372 (2014), 20130361, 18 pp. doi: 10.1098/rsta.2013.0361.

[19]

J. LinB. Lai and C. Wang, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015), 2952-2983.  doi: 10.1137/15M1007665.

[20]

P. Lions, Mathematical Topics in Fluid Mechanics, vol. 1. Incompressible Models, NewYork: Oxford University Press, 1996.

[21]

Q. LiuS. LiuW. Tan and X. Zhong, Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows, J. Differential Equations, 261 (2016), 6521-6569.  doi: 10.1016/j.jde.2016.08.044.

[22]

S. Liu and S. Wang, A blow-up criterion for 2D compressible nematic liquid crystal flows in terms of density, Acta Appl. Math., 147 (2017), 39-62.  doi: 10.1007/s10440-016-0067-0.

[23]

S. Liu and J. Zhang, Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2631-2648.  doi: 10.3934/dcdsb.2016065.

[24]

S. Ma, Classical solutions for the compressible liquid crystal flows with nonnegative initial densities, J. Math. Anal. Appl., 397 (2013), 595-618.  doi: 10.1016/j.jmaa.2012.08.010.

[25]

T. Wang, A regularity condition of strong solutions to the two dimensional equations of compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 40 (2017), 546-563.  doi: 10.1002/mma.3990.

show all references

References:
[1]

S. DingJ. LinC. Wang and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1D, Discrete Contin. Dyn. Syst., 32 (2012), 539-563.  doi: 10.3934/dcds.2012.32.539.

[2]

S. DingC. Wang and H. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 357-371.  doi: 10.3934/dcdsb.2011.15.357.

[3]

J. Ericksen, Hydrostatic theory of liquid crystal, Arch. Ration. Mech. Anal., 9 (1962), 371-378.  doi: 10.1007/BF00253358.

[4]

P. Gennes de, The Physics of Liquid Crystals, Oxford, 1974.

[5]

P. Germain, Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J. Math. Fluid Mech., 13 (2011), 137-146.  doi: 10.1007/s00021-009-0006-1.

[6]

T. HuangC. Wang and H. Wen, Strong solutions of the compressible nematic liquid crystal flow, J. Differential Equations, 252 (2012), 2222-2265.  doi: 10.1016/j.jde.2011.07.036.

[7]

T. HuangC. Wang and H. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three, Arch. Rational Mech. Anal., 204 (2012), 285-311.  doi: 10.1007/s00205-011-0476-1.

[8]

X. Huang and Y. Wang, A Serrin criterion for compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 36 (2013), 1363-1375.  doi: 10.1002/mma.2689.

[9]

F. JiangS. Jiang and D. Wang, On multi-dimensional compressible flows of nematic liquid crystals with large initial energy in a bounded domain, J. Funct. Anal., 265 (2013), 3369-3397.  doi: 10.1016/j.jfa.2013.07.026.

[10]

F. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265-283.  doi: 10.1007/BF00251810.

[11]

J. Li, Z. Xu and J. Zhang, Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows, preprint, arXiv: 1204.4966v1.

[12]

J. Li and Z. Liang, On classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum, J. Math. Pures Appl., 102 (2014), 640-671.  doi: 10.1016/j.matpur.2014.02.001.

[13]

L. Li, Q. Liu and X. Zhong, Global strong solution to the two-dimensional density-dependent nematic liquid crystal flows with vacuum, preprint, arXiv: 1508.00235v1.

[14]

F. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena, Comm. Pure Appl. Math., 42 (1989), 789-814.  doi: 10.1002/cpa.3160420605.

[15]

F. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Comm. Pure Appl. Math., 48 (1995), 501-537.  doi: 10.1002/cpa.3160480503.

[16]

F. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals, Discrete Contin. Dyn. Syst., 2 (1996), 1-22.  doi: 10.3934/dcds.1996.2.1.

[17]

F. Lin and C. Wang, The Analysis of Harmonic Maps and Their Heat Flows, Hackensack: World Scientific Publishing Co. Pte. Ltd. , 2008. doi: 10.1142/9789812779533.

[18]

F. Lin and C. Wang, Recent developments of analysis for hydrodynamic flow of nematic liquid crystals Philos. Trans. R. Soc. Lond. Ser. A, 372 (2014), 20130361, 18 pp. doi: 10.1098/rsta.2013.0361.

[19]

J. LinB. Lai and C. Wang, Global finite energy weak solutions to the compressible nematic liquid crystal flow in dimension three, SIAM J. Math. Anal., 47 (2015), 2952-2983.  doi: 10.1137/15M1007665.

[20]

P. Lions, Mathematical Topics in Fluid Mechanics, vol. 1. Incompressible Models, NewYork: Oxford University Press, 1996.

[21]

Q. LiuS. LiuW. Tan and X. Zhong, Global well-posedness of the 2D nonhomogeneous incompressible nematic liquid crystal flows, J. Differential Equations, 261 (2016), 6521-6569.  doi: 10.1016/j.jde.2016.08.044.

[22]

S. Liu and S. Wang, A blow-up criterion for 2D compressible nematic liquid crystal flows in terms of density, Acta Appl. Math., 147 (2017), 39-62.  doi: 10.1007/s10440-016-0067-0.

[23]

S. Liu and J. Zhang, Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2631-2648.  doi: 10.3934/dcdsb.2016065.

[24]

S. Ma, Classical solutions for the compressible liquid crystal flows with nonnegative initial densities, J. Math. Anal. Appl., 397 (2013), 595-618.  doi: 10.1016/j.jmaa.2012.08.010.

[25]

T. Wang, A regularity condition of strong solutions to the two dimensional equations of compressible nematic liquid crystal flows, Math. Methods Appl. Sci., 40 (2017), 546-563.  doi: 10.1002/mma.3990.

[1]

Sili Liu, Xinhua Zhao, Yingshan Chen. A new blowup criterion for strong solutions of the compressible nematic liquid crystal flow. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4515-4533. doi: 10.3934/dcdsb.2020110

[2]

Qiang Tao, Ying Yang. Exponential stability for the compressible nematic liquid crystal flow with large initial data. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1661-1669. doi: 10.3934/cpaa.2016007

[3]

Yang Liu, Xin Zhong. On the Cauchy problem of 3D nonhomogeneous incompressible nematic liquid crystal flows with vacuum. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5219-5238. doi: 10.3934/cpaa.2020234

[4]

Xiaoli Li. Global strong solution for the incompressible flow of liquid crystals with vacuum in dimension two. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4907-4922. doi: 10.3934/dcds.2017211

[5]

Bagisa Mukherjee, Chun Liu. On the stability of two nematic liquid crystal configurations. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 561-574. doi: 10.3934/dcdsb.2002.2.561

[6]

M. Gregory Forest, Hongyun Wang, Hong Zhou. Sheared nematic liquid crystal polymer monolayers. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 497-517. doi: 10.3934/dcdsb.2009.11.497

[7]

Jihong Zhao, Qiao Liu, Shangbin Cui. Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows. Communications on Pure and Applied Analysis, 2013, 12 (1) : 341-357. doi: 10.3934/cpaa.2013.12.341

[8]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[9]

Zhaoyang Qiu, Yixuan Wang. Martingale solution for stochastic active liquid crystal system. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2227-2268. doi: 10.3934/dcds.2020360

[10]

Tong Tang, Yongfu Wang. Strong solutions to compressible barotropic viscoelastic flow with vacuum. Kinetic and Related Models, 2015, 8 (4) : 765-775. doi: 10.3934/krm.2015.8.765

[11]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[12]

Zhiyuan Geng, Wei Wang, Pingwen Zhang, Zhifei Zhang. Stability of half-degree point defect profiles for 2-D nematic liquid crystal. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6227-6242. doi: 10.3934/dcds.2017269

[13]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[14]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[15]

Yinxia Wang. A remark on blow up criterion of three-dimensional nematic liquid crystal flows. Evolution Equations and Control Theory, 2016, 5 (2) : 337-348. doi: 10.3934/eect.2016007

[16]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[17]

Hao Wu. Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 379-396. doi: 10.3934/dcds.2010.26.379

[18]

T. Tachim Medjo. On the existence and uniqueness of solution to a stochastic simplified liquid crystal model. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2243-2264. doi: 10.3934/cpaa.2019101

[19]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[20]

Bingyuan Huang, Shijin Ding, Huanyao Wen. Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1717-1752. doi: 10.3934/dcdss.2016072

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (237)
  • HTML views (58)
  • Cited by (5)

Other articles
by authors

[Back to Top]