
-
Previous Article
A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian
- DCDS Home
- This Issue
-
Next Article
Variational properties and linear stabilities of spatial isosceles orbits in the equal-mass three-body problem
Typical points and families of expanding interval mappings
Centre for Mathematical Sciences, Lund University, Box 118,221 00 Lund, Sweden |
We study parametrised families of piecewise expanding interval mappings $T_a \colon [0,1] \to [0,1]$ with absolutely continuous invariant measures $\mu_a$ and give sufficient conditions for a point $X(a)$ to be typical with respect to $(T_a, \mu_a)$ for almost all parameters a. This is similar to a result by D.Schnellmann, but with different assumptions.
References:
[1] |
M. Björklund and D. Schnellmann,
Almost sure equidistribution in expansive families, Indag. Math. (N.S.), 20 (2009), 167-177.
doi: 10.1016/S0019-3577(09)00017-2. |
[2] |
Z. Kowalski,
Invariant measure for piecewise monotonic transformation has a positive lower bound on its support, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 53-57.
|
[3] |
C. Liverani,
Decay of correlations for piecewise expanding maps, J. Statist. Phys., 78 (1995), 1111-1129.
doi: 10.1007/BF02183704. |
[4] |
M. Rychlik,
Bounded variation and invariant measures, Studia Math., 76 (1983), 69-80.
|
[5] |
D. Schnellmann,
Typical points for one-parameter families of piecewise expanding maps of the interval, Discrete Contin. Dyn. Syst., 31 (2011), 877-911.
doi: 10.3934/dcds.2011.31.877. |
[6] |
D. Schnellmann,
Law of iterated logarithm and invariance principle for one-parameter families of interval maps, Probab. Theory Related Fields, 162 (2015), 365-409.
doi: 10.1007/s00440-014-0575-7. |
[7] |
G. Wagner,
The ergodic behaviour of piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete, 46 (1979), 317-324.
doi: 10.1007/BF00538119. |
[8] |
S. Wong,
Some metric properties of piecewise monotonic mappings of the unit interval, Trans. Amer. Math. Soc., 246 (1978), 493-500.
doi: 10.1090/S0002-9947-1978-0515555-9. |
show all references
References:
[1] |
M. Björklund and D. Schnellmann,
Almost sure equidistribution in expansive families, Indag. Math. (N.S.), 20 (2009), 167-177.
doi: 10.1016/S0019-3577(09)00017-2. |
[2] |
Z. Kowalski,
Invariant measure for piecewise monotonic transformation has a positive lower bound on its support, Bull. Acad. Polon. Sci. Sér. Sci. Math., 27 (1979), 53-57.
|
[3] |
C. Liverani,
Decay of correlations for piecewise expanding maps, J. Statist. Phys., 78 (1995), 1111-1129.
doi: 10.1007/BF02183704. |
[4] |
M. Rychlik,
Bounded variation and invariant measures, Studia Math., 76 (1983), 69-80.
|
[5] |
D. Schnellmann,
Typical points for one-parameter families of piecewise expanding maps of the interval, Discrete Contin. Dyn. Syst., 31 (2011), 877-911.
doi: 10.3934/dcds.2011.31.877. |
[6] |
D. Schnellmann,
Law of iterated logarithm and invariance principle for one-parameter families of interval maps, Probab. Theory Related Fields, 162 (2015), 365-409.
doi: 10.1007/s00440-014-0575-7. |
[7] |
G. Wagner,
The ergodic behaviour of piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete, 46 (1979), 317-324.
doi: 10.1007/BF00538119. |
[8] |
S. Wong,
Some metric properties of piecewise monotonic mappings of the unit interval, Trans. Amer. Math. Soc., 246 (1978), 493-500.
doi: 10.1090/S0002-9947-1978-0515555-9. |


[1] |
Daniel Schnellmann. Typical points for one-parameter families of piecewise expanding maps of the interval. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 877-911. doi: 10.3934/dcds.2011.31.877 |
[2] |
Jiu Ding, Aihui Zhou. Absolutely continuous invariant measures for piecewise $C^2$ and expanding mappings in higher dimensions. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 451-458. doi: 10.3934/dcds.2000.6.451 |
[3] |
Salvador Addas-Zanata. Stability for the vertical rotation interval of twist mappings. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 631-642. doi: 10.3934/dcds.2006.14.631 |
[4] |
Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006 |
[5] |
Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457 |
[6] |
Adrian Petruşel, Radu Precup, Marcel-Adrian Şerban. On the approximation of fixed points for non-self mappings on metric spaces. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 733-747. doi: 10.3934/dcdsb.2019264 |
[7] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete and Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[8] |
Yun Yang. Horseshoes for $\mathcal{C}^{1+\alpha}$ mappings with hyperbolic measures. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5133-5152. doi: 10.3934/dcds.2015.35.5133 |
[9] |
Lianpeng Yang, Xiong Li. Existence of periodically invariant tori on resonant surfaces for twist mappings. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1389-1409. doi: 10.3934/dcds.2020081 |
[10] |
Xavier Bressaud. Expanding interval maps with intermittent behaviour, physical measures and time scales. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 517-546. doi: 10.3934/dcds.2004.11.517 |
[11] |
Fawwaz Batayneh, Cecilia González-Tokman. On the number of invariant measures for random expanding maps in higher dimensions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5887-5914. doi: 10.3934/dcds.2021100 |
[12] |
Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381 |
[13] |
Fengbo Hang, Fanghua Lin. Topology of Sobolev mappings IV. Discrete and Continuous Dynamical Systems, 2005, 13 (5) : 1097-1124. doi: 10.3934/dcds.2005.13.1097 |
[14] |
Xuefeng Zhao, Yong Li. A Moser theorem for multiscale mappings. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022037 |
[15] |
Prof. Dr.rer.nat Widodo. Topological entropy of shift function on the sequences space induced by expanding piecewise linear transformations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 191-208. doi: 10.3934/dcds.2002.8.191 |
[16] |
Byung-Soo Lee. A convergence theorem of common fixed points of a countably infinite family of asymptotically quasi-$f_i$-expansive mappings in convex metric spaces. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 557-565. doi: 10.3934/naco.2013.3.557 |
[17] |
Huiyan Xue, Antonella Zanna. Generating functions and volume preserving mappings. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1229-1249. doi: 10.3934/dcds.2014.34.1229 |
[18] |
Valentin Afraimovich, Maurice Courbage, Lev Glebsky. Directional complexity and entropy for lift mappings. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3385-3401. doi: 10.3934/dcdsb.2015.20.3385 |
[19] |
Dariusz Bugajewski, Piotr Kasprzak. On mappings of higher order and their applications to nonlinear equations. Communications on Pure and Applied Analysis, 2012, 11 (2) : 627-647. doi: 10.3934/cpaa.2012.11.627 |
[20] |
Alexei Pokrovskii, Oleg Rasskazov. Structure of index sequences for mappings with an asymptotic derivative. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 653-670. doi: 10.3934/dcds.2007.17.653 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]