August  2017, 37(8): 4213-4230. doi: 10.3934/dcds.2017179

Positive ground state solutions for a quasilinear elliptic equation with critical exponent

School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

* Corresponding author: Yinbin Deng

Received  October 2016 Revised  March 2017 Published  April 2017

In this paper, we study the following quasilinear elliptic equation with critical Sobolev exponent:
$ -\Delta u +V(x)u-[\Delta(1+u^2)^{\frac 12}]\frac {u}{2(1+u^2)^\frac 12}=|u|^{2^*-2}u+|u|^{p-2}u, \quad x\in {{\mathbb{R}}^{N}}, $
which models the self-channeling of a high-power ultra short laser in matter, where N ≥ 3; 2 < p < 2* = $\frac{{2N}}{{N -2}}$ and V (x) is a given positive potential. Combining the change of variables and an abstract result developed by Jeanjean in [14], we obtain the existence of positive ground state solutions for the given problem.
Citation: Yinbin Deng, Wentao Huang. Positive ground state solutions for a quasilinear elliptic equation with critical exponent. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4213-4230. doi: 10.3934/dcds.2017179
References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.

[2]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.

[3]

J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744. doi: 10.1016/j.jde.2009.11.030.

[4]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550. doi: 10.1063/1.860828.

[5]

H. Brezis and E. Lieb, A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.

[6]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082-2085.  doi: 10.1103/PhysRevLett.70.2082.

[7]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.

[8]

A. De BouardN. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73-105.  doi: 10.1007/s002200050191.

[9]

Y. DengS. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.  doi: 10.1016/j.jde.2014.09.006.

[10]

Y. DengS. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differential Equations, 260 (2016), 1228-1262.  doi: 10.1016/j.jde.2015.09.021.

[11]

Y. Deng, S. Peng and S. Yan, Solitary wave solutions to a quasilinear Schrödinger equation modeling the self-channeling of a high-power ultrashort laser in matter, submitted.

[12]

M. F. FurtadoL. A. Maia and E. S. Medeiros, Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential, Adv. Nonlinear Stud., 8 (2008), 353-373.  doi: 10.1006/jdeq.1997.3375.

[13]

J. P. García Azorero and Alonso I. Peral, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144 (1998), 441-476.  doi: 10.1006/jdeq.1997.3375.

[14]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on ${{\mathbb{R}}.{N}}$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809.  doi: 10.1017/S0308210500013147.

[15]

L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on ${{\mathbb{R}}^{N}}$, Indiana Univ. Math. J., 54 (2005), 443-464.  doi: 10.1512/iumj.2005.54.2502.

[16]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267. 

[17]

E. LaedkeK. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.  doi: 10.1063/1.525675.

[18]

H. F. Lins and E. A. B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009), 2890-2905.  doi: 10.1016/j.na.2009.01.171].

[19]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1987), 109-145.  doi: 10.1016/S0294-1449(16)30422-X.

[20]

J. LiuY. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. Ⅱ, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.

[21]

J. LiuY. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901.  doi: 10.1081/PDE-120037335.

[22]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I, I, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.

[23]

X. LiuJ. Liu and Z. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124.  doi: 10.1016/j.jde.2012.09.006.

[24]

X. LiuJ. Liu and Z. Wang, Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 46 (2013), 641-669.  doi: 10.1007/s00526-012-0497-0.

[25]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in ${{\mathbb{R}}.{N}}$, J. Differential Equations, 229 (2006), 570-587.  doi: 10.1016/j.jde.2006.07.001.

[26]

M. PoppenbergK. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.  doi: 10.1007/s005260100105.

[27]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.  doi: 10.1103/PhysRevE.50.R687.

[28]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.

[29]

E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33.  doi: 10.1007/s00526-009-0299-1.

[30]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.

[31]

J. YangY. Wang and A. A. Abdelgadir, Soliton solutions for quasilinear Schrödinger equations, J. Math. Phys., 54 (2013), 071502, 19pp.  doi: 10.1063/1.4811394.

[32]

J. Zhang and W. Zou, A Berestycki-Lions theorem revisited, Commun. Contemp. Math., 14 (2012), 1250033, 14 pp.  doi: 10.1142/S0219199712500332.

[33]

X. Zhu and D. Cao, The concentration-compactness principle in nonlinear elliptic equations, Acta Math. Sci., 9 (1989), 307-328. 

show all references

References:
[1]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal., 14 (1973), 349-381.  doi: 10.1016/0022-1236(73)90051-7.

[2]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.

[3]

J. M. Bezerra do Ó, O. H. Miyagaki and S. H. M. Soares, Soliton solutions for quasilinear Schrödinger equations with critical growth, J. Differential Equations, 248 (2010), 722-744. doi: 10.1016/j.jde.2009.11.030.

[4]

H. Brandi, C. Manus, G. Mainfray, T. Lehner and G. Bonnaud, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Phys. Fluids B, 5 (1993), 3539-3550. doi: 10.1063/1.860828.

[5]

H. Brezis and E. Lieb, A relation between pointwise convergence of function and convergence of functional, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.2307/2044999.

[6]

X. L. Chen and R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma, Phys. Rev. Lett., 70 (1993), 2082-2085.  doi: 10.1103/PhysRevLett.70.2082.

[7]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: A dual approach, Nonlinear Anal. TMA., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.

[8]

A. De BouardN. Hayashi and J. Saut, Global existence of small solutions to a relativistic nonlinear Schrödinger equation, Commun. Math. Phys., 189 (1997), 73-105.  doi: 10.1007/s002200050191.

[9]

Y. DengS. Peng and S. Yan, Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth, J. Differential Equations, 258 (2015), 115-147.  doi: 10.1016/j.jde.2014.09.006.

[10]

Y. DengS. Peng and S. Yan, Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations, J. Differential Equations, 260 (2016), 1228-1262.  doi: 10.1016/j.jde.2015.09.021.

[11]

Y. Deng, S. Peng and S. Yan, Solitary wave solutions to a quasilinear Schrödinger equation modeling the self-channeling of a high-power ultrashort laser in matter, submitted.

[12]

M. F. FurtadoL. A. Maia and E. S. Medeiros, Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential, Adv. Nonlinear Stud., 8 (2008), 353-373.  doi: 10.1006/jdeq.1997.3375.

[13]

J. P. García Azorero and Alonso I. Peral, Hardy inequalities and some critical elliptic and parabolic problems, J. Differential Equations, 144 (1998), 441-476.  doi: 10.1006/jdeq.1997.3375.

[14]

L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on ${{\mathbb{R}}.{N}}$, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 787-809.  doi: 10.1017/S0308210500013147.

[15]

L. Jeanjean and K. Tanaka, A positive solution for a nonlinear Schrödinger equation on ${{\mathbb{R}}^{N}}$, Indiana Univ. Math. J., 54 (2005), 443-464.  doi: 10.1512/iumj.2005.54.2502.

[16]

S. Kurihara, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Japan, 50 (1981), 3262-3267. 

[17]

E. LaedkeK. Spatschek and L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1983), 2764-2769.  doi: 10.1063/1.525675.

[18]

H. F. Lins and E. A. B. Silva, Quasilinear asymptotically periodic elliptic equations with critical growth, Nonlinear Anal., 71 (2009), 2890-2905.  doi: 10.1016/j.na.2009.01.171].

[19]

P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1987), 109-145.  doi: 10.1016/S0294-1449(16)30422-X.

[20]

J. LiuY. Wang and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. Ⅱ, J. Differential Equations, 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.

[21]

J. LiuY. Wang and Z. Wang, Solutions for quasilinear Schrödinger equations via the Nehari method, Comm. Partial Differential Equations, 29 (2004), 879-901.  doi: 10.1081/PDE-120037335.

[22]

J. Liu and Z. Wang, Soliton solutions for quasilinear Schrödinger equations. I, I, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.

[23]

X. LiuJ. Liu and Z. Wang, Quasilinear elliptic equations with critical growth via perturbation method, J. Differential Equations, 254 (2013), 102-124.  doi: 10.1016/j.jde.2012.09.006.

[24]

X. LiuJ. Liu and Z. Wang, Ground states for quasilinear Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 46 (2013), 641-669.  doi: 10.1007/s00526-012-0497-0.

[25]

A. Moameni, Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in ${{\mathbb{R}}.{N}}$, J. Differential Equations, 229 (2006), 570-587.  doi: 10.1016/j.jde.2006.07.001.

[26]

M. PoppenbergK. Schmitt and Z. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differential Equations, 14 (2002), 329-344.  doi: 10.1007/s005260100105.

[27]

B. Ritchie, Relativistic self-focusing and channel formation in laser-plasma interactions, Phys. Rev. E, 50 (1994), 687-689.  doi: 10.1103/PhysRevE.50.R687.

[28]

Y. Shen and Y. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. TMA., 80 (2013), 194-201.  doi: 10.1016/j.na.2012.10.005.

[29]

E. A. B. Silva and G. F. Vieira, Quasilinear asymptotically periodic Schrödinger equations with critical growth, Calc. Var. Partial Differential Equations, 39 (2010), 1-33.  doi: 10.1007/s00526-009-0299-1.

[30]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.

[31]

J. YangY. Wang and A. A. Abdelgadir, Soliton solutions for quasilinear Schrödinger equations, J. Math. Phys., 54 (2013), 071502, 19pp.  doi: 10.1063/1.4811394.

[32]

J. Zhang and W. Zou, A Berestycki-Lions theorem revisited, Commun. Contemp. Math., 14 (2012), 1250033, 14 pp.  doi: 10.1142/S0219199712500332.

[33]

X. Zhu and D. Cao, The concentration-compactness principle in nonlinear elliptic equations, Acta Math. Sci., 9 (1989), 307-328. 

[1]

Yu Su, Zhaosheng Feng. Ground state solutions and decay estimation of Choquard equation with critical exponent and Dipole potential. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022112

[2]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[3]

Marco A. S. Souto, Sérgio H. M. Soares. Ground state solutions for quasilinear stationary Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2013, 12 (1) : 99-116. doi: 10.3934/cpaa.2013.12.99

[4]

Yongpeng Chen, Yuxia Guo, Zhongwei Tang. Concentration of ground state solutions for quasilinear Schrödinger systems with critical exponents. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2693-2715. doi: 10.3934/cpaa.2019120

[5]

Gui-Dong Li, Chun-Lei Tang. Existence of positive ground state solutions for Choquard equation with variable exponent growth. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2035-2050. doi: 10.3934/dcdss.2019131

[6]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

[7]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[8]

Yu Su, Zhaosheng Feng. Ground state solutions for the fractional problems with dipole-type potential and critical exponent. Communications on Pure and Applied Analysis, 2022, 21 (6) : 1953-1968. doi: 10.3934/cpaa.2021111

[9]

Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025

[10]

Yanfang Xue, Chunlei Tang. Ground state solutions for asymptotically periodic quasilinear Schrödinger equations with critical growth. Communications on Pure and Applied Analysis, 2018, 17 (3) : 1121-1145. doi: 10.3934/cpaa.2018054

[11]

Yinbin Deng, Shuangjie Peng, Li Wang. Existence of multiple solutions for a nonhomogeneous semilinear elliptic equation involving critical exponent. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 795-826. doi: 10.3934/dcds.2012.32.795

[12]

Marcos L. M. Carvalho, Edcarlos D. Silva, Claudiney Goulart, Carlos A. Santos. Ground and bound state solutions for quasilinear elliptic systems including singular nonlinearities and indefinite potentials. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4401-4432. doi: 10.3934/cpaa.2020201

[13]

Guangze Gu, Xianhua Tang, Youpei Zhang. Ground states for asymptotically periodic fractional Kirchhoff equation with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3181-3200. doi: 10.3934/cpaa.2019143

[14]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure and Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[15]

Jincai Kang, Chunlei Tang. Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5239-5252. doi: 10.3934/cpaa.2020235

[16]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity. Electronic Research Archive, 2021, 29 (5) : 3281-3295. doi: 10.3934/era.2021038

[17]

Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104

[18]

Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907

[19]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure and Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[20]

Claudianor Oliveira Alves, M. A.S. Souto. On existence and concentration behavior of ground state solutions for a class of problems with critical growth. Communications on Pure and Applied Analysis, 2002, 1 (3) : 417-431. doi: 10.3934/cpaa.2002.1.417

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (332)
  • HTML views (76)
  • Cited by (11)

Other articles
by authors

[Back to Top]