-
Previous Article
The geometric discretisation of the Suslov problem: A case study of consistency for nonholonomic integrators
- DCDS Home
- This Issue
-
Next Article
Separated nets arising from certain higher rank $\mathbb{R}^k$ actions on homogeneous spaces
On nonlocal symmetries generated by recursion operators: Second-order evolution equations
1. | Division of Mathematics, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden |
2. | Dipartimento di Matematica e Informatica, Università di Perugia, 06123, Perugia, Italy |
We introduce a new type of recursion operator suitable to generate a class of nonlocal symmetries for those second-order evolution equations in $1+1$ dimension which allow the complete integration of their time-independent versions. We show that this class of evolution equations is $C$-integrable (linearizable by a point transformation). We also discuss some applications.
References:
[1] |
S. C. Anco and G. Bluman,
Direct construction method for conservation laws of PDEs Part Ⅱ: General treatment, Euro. J. Applied Mathematics, 13 (2002), 567-585.
doi: 10.1017/S0956792501004661. |
[2] |
M. Euler and N. Euler,
Second-order recursion operators of third-order evolution equations with fourth-order integrating factors, J. Nonlinear Math. Phys., 14 (2007), 313-315.
doi: 10.2991/jnmp.2007.14.3.2. |
[3] |
N. Euler and M. Euler,
On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: Two linearisable hierarchies, J. Nonlinear Math. Phys., 16 (2009), 489-504.
doi: 10.1142/S1402925109000509. |
[4] |
M. Euler, N. Euler and N. Petersson,
Linearisable hierarchies of evolution equations in (1+1) dimensions, Stud. Appl. Math., 111 (2003), 315-337.
doi: 10.1111/1467-9590.t01-1-00236. |
[5] |
A. S. Fokas,
Symmetries and Integrability, Stud. Appl. Math., 77 (1987), 253-299.
doi: 10.1002/sapm1987773253. |
[6] |
P. J. Olver,
Evolution equations possessing infinitely many symmetries, J. Math. Phys., 18 (1977), 1212-1215.
doi: 10.1063/1.523393. |
[7] |
P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4684-0274-2. |
[8] |
N. Petersson, N. Euler and M. Euler,
Recursion Operators for a Class of Integrable ThirdOrder Evolution Equations, Stud. Appl. Math., 112 (2004), 201-225.
doi: 10.1111/j.0022-2526.2004.01511.x. |
show all references
References:
[1] |
S. C. Anco and G. Bluman,
Direct construction method for conservation laws of PDEs Part Ⅱ: General treatment, Euro. J. Applied Mathematics, 13 (2002), 567-585.
doi: 10.1017/S0956792501004661. |
[2] |
M. Euler and N. Euler,
Second-order recursion operators of third-order evolution equations with fourth-order integrating factors, J. Nonlinear Math. Phys., 14 (2007), 313-315.
doi: 10.2991/jnmp.2007.14.3.2. |
[3] |
N. Euler and M. Euler,
On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: Two linearisable hierarchies, J. Nonlinear Math. Phys., 16 (2009), 489-504.
doi: 10.1142/S1402925109000509. |
[4] |
M. Euler, N. Euler and N. Petersson,
Linearisable hierarchies of evolution equations in (1+1) dimensions, Stud. Appl. Math., 111 (2003), 315-337.
doi: 10.1111/1467-9590.t01-1-00236. |
[5] |
A. S. Fokas,
Symmetries and Integrability, Stud. Appl. Math., 77 (1987), 253-299.
doi: 10.1002/sapm1987773253. |
[6] |
P. J. Olver,
Evolution equations possessing infinitely many symmetries, J. Math. Phys., 18 (1977), 1212-1215.
doi: 10.1063/1.523393. |
[7] |
P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4684-0274-2. |
[8] |
N. Petersson, N. Euler and M. Euler,
Recursion Operators for a Class of Integrable ThirdOrder Evolution Equations, Stud. Appl. Math., 112 (2004), 201-225.
doi: 10.1111/j.0022-2526.2004.01511.x. |
[1] |
A. V. Bobylev, Vladimir Dorodnitsyn. Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 35-57. doi: 10.3934/dcds.2009.24.35 |
[2] |
Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046 |
[3] |
Masahiro Kubo. Quasi-subdifferential operators and evolution equations. Conference Publications, 2013, 2013 (special) : 447-456. doi: 10.3934/proc.2013.2013.447 |
[4] |
Jin Liang, James H. Liu, Ti-Jun Xiao. Nonlocal Cauchy problems for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2006, 5 (3) : 529-535. doi: 10.3934/cpaa.2006.5.529 |
[5] |
Jin Liang, James H. Liu, Ti-Jun Xiao. Condensing operators and periodic solutions of infinite delay impulsive evolution equations. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 475-485. doi: 10.3934/dcdss.2017023 |
[6] |
Fengxin Chen. Stability and uniqueness of traveling waves for system of nonlocal evolution equations with bistable nonlinearity. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 659-673. doi: 10.3934/dcds.2009.24.659 |
[7] |
Hongmei Cheng, Rong Yuan. Existence and asymptotic stability of traveling fronts for nonlocal monostable evolution equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 3007-3022. doi: 10.3934/dcdsb.2017160 |
[8] |
Pengyu Chen, Xuping Zhang. Approximate controllability of nonlocal problem for non-autonomous stochastic evolution equations. Evolution Equations and Control Theory, 2021, 10 (3) : 471-489. doi: 10.3934/eect.2020076 |
[9] |
Dinh-Ke Tran, Nhu-Thang Nguyen. On regularity and stability for a class of nonlocal evolution equations with nonlinear perturbations. Communications on Pure and Applied Analysis, 2022, 21 (3) : 817-835. doi: 10.3934/cpaa.2021200 |
[10] |
Kehan Shi, Ying Wen. Nonlocal biharmonic evolution equations with Dirichlet and Navier boundary conditions. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022089 |
[11] |
Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure and Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039 |
[12] |
Miriam Manoel, Patrícia Tempesta. Binary differential equations with symmetries. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1957-1974. doi: 10.3934/dcds.2019082 |
[13] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2725-2737. doi: 10.3934/dcds.2020383 |
[14] |
Gernot Holler, Karl Kunisch. Learning nonlocal regularization operators. Mathematical Control and Related Fields, 2022, 12 (1) : 81-114. doi: 10.3934/mcrf.2021003 |
[15] |
Benzion Shklyar. Exact null-controllability of interconnected abstract evolution equations with unbounded input operators. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 463-479. doi: 10.3934/dcds.2021124 |
[16] |
Pengyu Chen, Xuping Zhang. Non-autonomous stochastic evolution equations of parabolic type with nonlocal initial conditions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4681-4695. doi: 10.3934/dcdsb.2020308 |
[17] |
Meng Qu, Jiayan Wu, Ting Zhang. Sliding method for the semi-linear elliptic equations involving the uniformly elliptic nonlocal operators. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2285-2300. doi: 10.3934/dcds.2020362 |
[18] |
Sasikarn Yeepo, Wicharn Lewkeeratiyutkul, Sujin Khomrutai, Armin Schikorra. On the Calderon-Zygmund property of Riesz-transform type operators arising in nonlocal equations. Communications on Pure and Applied Analysis, 2021, 20 (9) : 2915-2939. doi: 10.3934/cpaa.2021071 |
[19] |
Alexander V. Bobylev, Sergey V. Meleshko. On group symmetries of the hydrodynamic equations for rarefied gas. Kinetic and Related Models, 2021, 14 (3) : 469-482. doi: 10.3934/krm.2021012 |
[20] |
Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure and Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]