We introduce a new type of recursion operator suitable to generate a class of nonlocal symmetries for those second-order evolution equations in $1+1$ dimension which allow the complete integration of their time-independent versions. We show that this class of evolution equations is $C$-integrable (linearizable by a point transformation). We also discuss some applications.
Citation: |
[1] |
S. C. Anco and G. Bluman, Direct construction method for conservation laws of PDEs Part Ⅱ: General treatment, Euro. J. Applied Mathematics, 13 (2002), 567-585.
doi: 10.1017/S0956792501004661.![]() ![]() ![]() |
[2] |
M. Euler and N. Euler, Second-order recursion operators of third-order evolution equations with fourth-order integrating factors, J. Nonlinear Math. Phys., 14 (2007), 313-315.
doi: 10.2991/jnmp.2007.14.3.2.![]() ![]() ![]() |
[3] |
N. Euler and M. Euler, On nonlocal symmetries, nonlocal conservation laws and nonlocal transformations of evolution equations: Two linearisable hierarchies, J. Nonlinear Math. Phys., 16 (2009), 489-504.
doi: 10.1142/S1402925109000509.![]() ![]() ![]() |
[4] |
M. Euler, N. Euler and N. Petersson, Linearisable hierarchies of evolution equations in (1+1) dimensions, Stud. Appl. Math., 111 (2003), 315-337.
doi: 10.1111/1467-9590.t01-1-00236.![]() ![]() ![]() |
[5] |
A. S. Fokas, Symmetries and Integrability, Stud. Appl. Math., 77 (1987), 253-299.
doi: 10.1002/sapm1987773253.![]() ![]() ![]() |
[6] |
P. J. Olver, Evolution equations possessing infinitely many symmetries, J. Math. Phys., 18 (1977), 1212-1215.
doi: 10.1063/1.523393.![]() ![]() ![]() |
[7] |
P. J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1986.
doi: 10.1007/978-1-4684-0274-2.![]() ![]() ![]() |
[8] |
N. Petersson, N. Euler and M. Euler, Recursion Operators for a Class of Integrable ThirdOrder Evolution Equations, Stud. Appl. Math., 112 (2004), 201-225.
doi: 10.1111/j.0022-2526.2004.01511.x.![]() ![]() ![]() |