
-
Previous Article
Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis
- DCDS Home
- This Issue
-
Next Article
On nonlocal symmetries generated by recursion operators: Second-order evolution equations
The geometric discretisation of the Suslov problem: A case study of consistency for nonholonomic integrators
1. | Departamento de Matemáticas y Mecánica, IIMAS-UNAM, Apdo. Postal: 20-726, Mexico City, 01000, Mexico |
2. | Department of Applied Mathematics, University of Waterloo, 200 Univ. Avenue West, N2L 3G1, Waterloo, Canada |
Geometric integrators for nonholonomic systems were introduced by Cortés and Martínez in [
Cortés and Martínez [
We evaluate the importance of the consistency condition by comparing the performance of two different geometric integrators for the nonholonomic Suslov problem, only one of which corresponds to a consistent choice of $L_d$ and $D_d$. We prove that both integrators produce approximations of the same order, and, moreover, that the non-consistent discretisation outperforms the other in numerical experiments and in terms of energy preservation. Our results indicate that the consistency of a discretisation might not be the most relevant feature to consider in the construction of nonholonomic geometric integrators.
References:
[1] |
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics; Dynamical Systems Ⅲ, 3rd edition, Encyclopaedia of Mathematical Sciences, 3. Springer-Verlag, Berlin, 2006.
doi: 10.1007/978-3-642-61551-1. |
[2] |
A. M. Bloch, Nonholonomic Mechanics and Control, 2nd edition, Springer-Verlag, New York, 2015.
doi: 10.1007/b97376. |
[3] |
A. I. Bobenko and Y. B. Suris,
Discrete Lagrangian reduction, discrete Euler-Poincaré equations and semidirect products, Lett. Math. Phys., 49 (1999), 79-93.
doi: 10.1023/A:1007654605901. |
[4] |
J. Cortés and S. Martínez,
Nonholonomic integrators, Nonlinearity, 14 (2001), 1365-1392.
doi: 10.1088/0951-7715/14/5/322. |
[5] |
Y. N. Fedorov and V. V. Kozlov,
Various aspects of n-dimensional rigid body dynamics, Amer. Math. Soc. Transl., 168 (1995), 141-171.
doi: 10.1090/trans2/168/06. |
[6] |
Y. N. Fedorov and D. V. Zenkov,
Discrete nonholonomic LL systems on Lie groups, Nonlinearity, 18 (2005), 2211-2241.
doi: 10.1088/0951-7715/18/5/017. |
[7] |
Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem, SIGMA, 3 (2007), Paper 044, 15pp.
doi: 10.3842/SIGMA.2007.044. |
[8] |
Y. N. Fedorov, A. J. Maciejewski and M. Przybylska,
The Poisson equations in the nonholonomic Suslov problem: Integrability, meromorphic and hypergeometric solutions, Nonlinearity, 22 (2009), 2231-2259.
doi: 10.1088/0951-7715/22/9/009. |
[9] |
L. C. García-Naranjo, J. C. Marrero, A. J. Maciejewski and M. Przybylska,
The inhomogeneous Suslov problem, Phys. Lett. A, 378 (2014), 2389-2394.
doi: 10.1016/j.physleta.2014.06.026. |
[10] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez,
Discrete nonholonomic Lagrangian systems on Lie groupoids, J. Nonlinear Sci., 18 (2008), 351-397.
doi: 10.1007/s00332-007-9012-8. |
[11] |
A. Iserles, H. Z. Munthe-Kaas, S. P. Norsett and A. Zanna,
Lie-group methods, Acta Numerica., 9 (2000), 215-365.
doi: 10.1017/S0962492900002154. |
[12] |
F. Jiménez and J. Scheurle,
On the discretization of nonholonomic mechanics in $\mathbb{R}^N$, J. Geom. Mech., 7 (2015), 43-80.
doi: 10.3934/jgm.2015.7.43. |
[13] |
F. Jiménez and J. Scheurle, On the discretization of the Euler-Poincaré-Suslov equations in SO(3), arXiv: 1506.01289. To appear in J. Geom. Mech. |
[14] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, 2nd edition, Texts in Applied Mathematics, 17. SpringerVerlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5. |
[15] |
J. E. Marsden and M. West,
Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.
doi: 10.1017/S096249290100006X. |
[16] |
R. McLachlan and M. Perlmutter,
Integrators for nonholonomic mechanical systems, J. Nonlinear Sci., 16 (2006), 283-328.
doi: 10.1007/s00332-005-0698-1. |
[17] |
J. Moser and A. P. Veselov,
Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991), 217-243.
doi: 10.1007/BF02352494. |
[18] |
G. K. Suslov, Theoretical Mechanics, Gostekhizdat, Moscow, 1946 (in Russian). |
[19] |
A. P. Veselov,
Integrable discrete-time systems and difference operators, Funct. Anal. Appl., 22 (1988), 1-13.
doi: 10.1007/bf01077598. |
show all references
References:
[1] |
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics; Dynamical Systems Ⅲ, 3rd edition, Encyclopaedia of Mathematical Sciences, 3. Springer-Verlag, Berlin, 2006.
doi: 10.1007/978-3-642-61551-1. |
[2] |
A. M. Bloch, Nonholonomic Mechanics and Control, 2nd edition, Springer-Verlag, New York, 2015.
doi: 10.1007/b97376. |
[3] |
A. I. Bobenko and Y. B. Suris,
Discrete Lagrangian reduction, discrete Euler-Poincaré equations and semidirect products, Lett. Math. Phys., 49 (1999), 79-93.
doi: 10.1023/A:1007654605901. |
[4] |
J. Cortés and S. Martínez,
Nonholonomic integrators, Nonlinearity, 14 (2001), 1365-1392.
doi: 10.1088/0951-7715/14/5/322. |
[5] |
Y. N. Fedorov and V. V. Kozlov,
Various aspects of n-dimensional rigid body dynamics, Amer. Math. Soc. Transl., 168 (1995), 141-171.
doi: 10.1090/trans2/168/06. |
[6] |
Y. N. Fedorov and D. V. Zenkov,
Discrete nonholonomic LL systems on Lie groups, Nonlinearity, 18 (2005), 2211-2241.
doi: 10.1088/0951-7715/18/5/017. |
[7] |
Y. N. Fedorov, A discretization of the nonholonomic Chaplygin sphere problem, SIGMA, 3 (2007), Paper 044, 15pp.
doi: 10.3842/SIGMA.2007.044. |
[8] |
Y. N. Fedorov, A. J. Maciejewski and M. Przybylska,
The Poisson equations in the nonholonomic Suslov problem: Integrability, meromorphic and hypergeometric solutions, Nonlinearity, 22 (2009), 2231-2259.
doi: 10.1088/0951-7715/22/9/009. |
[9] |
L. C. García-Naranjo, J. C. Marrero, A. J. Maciejewski and M. Przybylska,
The inhomogeneous Suslov problem, Phys. Lett. A, 378 (2014), 2389-2394.
doi: 10.1016/j.physleta.2014.06.026. |
[10] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez,
Discrete nonholonomic Lagrangian systems on Lie groupoids, J. Nonlinear Sci., 18 (2008), 351-397.
doi: 10.1007/s00332-007-9012-8. |
[11] |
A. Iserles, H. Z. Munthe-Kaas, S. P. Norsett and A. Zanna,
Lie-group methods, Acta Numerica., 9 (2000), 215-365.
doi: 10.1017/S0962492900002154. |
[12] |
F. Jiménez and J. Scheurle,
On the discretization of nonholonomic mechanics in $\mathbb{R}^N$, J. Geom. Mech., 7 (2015), 43-80.
doi: 10.3934/jgm.2015.7.43. |
[13] |
F. Jiménez and J. Scheurle, On the discretization of the Euler-Poincaré-Suslov equations in SO(3), arXiv: 1506.01289. To appear in J. Geom. Mech. |
[14] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems, 2nd edition, Texts in Applied Mathematics, 17. SpringerVerlag, New York, 1999.
doi: 10.1007/978-0-387-21792-5. |
[15] |
J. E. Marsden and M. West,
Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.
doi: 10.1017/S096249290100006X. |
[16] |
R. McLachlan and M. Perlmutter,
Integrators for nonholonomic mechanical systems, J. Nonlinear Sci., 16 (2006), 283-328.
doi: 10.1007/s00332-005-0698-1. |
[17] |
J. Moser and A. P. Veselov,
Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991), 217-243.
doi: 10.1007/BF02352494. |
[18] |
G. K. Suslov, Theoretical Mechanics, Gostekhizdat, Moscow, 1946 (in Russian). |
[19] |
A. P. Veselov,
Integrable discrete-time systems and difference operators, Funct. Anal. Appl., 22 (1988), 1-13.
doi: 10.1007/bf01077598. |




[1] |
Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017 |
[2] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[3] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69 |
[4] |
Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete and Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105 |
[5] |
Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014 |
[6] |
Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213 |
[7] |
Jean-Marie Souriau. On Geometric Mechanics. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595 |
[8] |
Robert L. Griess Jr., Ching Hung Lam. Groups of Lie type, vertex algebras, and modular moonshine. Electronic Research Announcements, 2014, 21: 167-176. doi: 10.3934/era.2014.21.167 |
[9] |
Andrew D. Lewis. Nonholonomic and constrained variational mechanics. Journal of Geometric Mechanics, 2020, 12 (2) : 165-308. doi: 10.3934/jgm.2020013 |
[10] |
Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527 |
[11] |
Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 |
[12] |
Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001 |
[13] |
Andrew N. W. Hone, Matteo Petrera. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. Journal of Geometric Mechanics, 2009, 1 (1) : 55-85. doi: 10.3934/jgm.2009.1.55 |
[14] |
Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267 |
[15] |
Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019 |
[16] |
Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 |
[17] |
Benjamin Couéraud, François Gay-Balmaz. Variational discretization of thermodynamical simple systems on Lie groups. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1075-1102. doi: 10.3934/dcdss.2020064 |
[18] |
Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144 |
[19] |
Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39 |
[20] |
Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29 (3) : 2457-2473. doi: 10.3934/era.2020124 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]