-
Previous Article
Statistical and deterministic dynamics of maps with memory
- DCDS Home
- This Issue
-
Next Article
Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one
On coupled Dirac systems
1. | Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China |
2. | School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China |
$\left\{ \begin{aligned}Du=\frac{\partial H}{\partial v}(x,u,v)\hspace{4mm} {\rm on}\hspace{2mm}M,\\Dv=\frac{\partial H}{\partial u}(x,u,v)\hspace{4mm} {\rm on}\hspace{2mm}M,\end{aligned} \right.$ |
$H(x,u,v)=f(x)\frac{|u|^{p+1}}{p+1}+g(x)\frac{|v|^{q+1}}{q+1},$ |
$\frac{1}{p+1}+\frac{1}{q+1}>\frac{n-1}{n}.$ |
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Space, 2nd edition, Elsevier/Academic Press, Amsterdam, 2003. |
[2] |
B. Ammann, A variational Problem in Conformal Spin Geometry, Ph. D thesis, Habilitationsschift, Universität Hamburg 2003. Google Scholar |
[3] |
B. Ammann,
The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions, Commun. Anal. Geom., 17 (2009), 429-479.
doi: 10.4310/CAG.2009.v17.n3.a2. |
[4] |
S. Angenent and R. van der Vorst,
A superquadratic indefinite elliptic system and its MorseConley-Floer homology, Math. Z., 231 (1999), 203-248.
doi: 10.1007/PL00004731. |
[5] |
T. Bartsch and Y. Ding,
Homoclinic solutions of an infinite-dimensional Hamiltonian system, Math. Z., 240 (2002), 289-310.
doi: 10.1007/s002090100383. |
[6] |
T. Bartsch and Y. Ding,
Periodic solutions of superlinear beam and membrane equations with perturbations from symmetry, Nonlinear Analysis, 44 (2001), 727-748.
doi: 10.1016/S0362-546X(99)00302-8. |
[7] |
T. Bartsch,
Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal., 20 (1993), 1205-1216.
doi: 10.1016/0362-546X(93)90151-H. |
[8] |
C. J. Batkam and F. Colin,
Generalized fountain theorem and applications to strongly indefinite semilinear problems, J. Math. Anal. Appl., 405 (2013), 438-452.
doi: 10.1016/j.jmaa.2013.04.018. |
[9] |
V. Benci and P. H. Rabinowitz,
Critical point theorems for indefinite functionals, Invent. Math., 52 (1979), 241-273.
doi: 10.1007/BF01389883. |
[10] |
Q. Chen, J. Jost, J. Li and G. Wang,
Dirac-harmonic maps, Math. Z., 254 (2006), 409-432.
doi: 10.1007/s00209-006-0961-7. |
[11] |
Q. Chen, J. Jost and G. Wang,
Nonlinear Dirac equations on Riemann surfaces, Ann. Global Anal. Geom., 33 (2008), 253-270.
doi: 10.1007/s10455-007-9084-6. |
[12] |
P. Felmer and D. G. deFigueiredo,
On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 99-116.
doi: 10.1090/S0002-9947-1994-1214781-2. |
[13] |
P. Felmer,
Periodic solutions of 'superquadratic' Hamiltonian systems, J. Differential Equations, 102 (1993), 188-207.
doi: 10.1006/jdeq.1993.1027. |
[14] |
T. Friedrich, Dirac Operators in Riemannian Geometry, Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 1997.
doi: 10.1090/gsm/025. |
[15] |
T. Friedrich,
On the spinor representation of surfaces in Euclidean 3-space, J. Geom. Phy., 28 (1998), 143-157.
doi: 10.1016/S0393-0440(98)00018-7. |
[16] |
N. Ginoux, The Dirac Spectrum, Lecture Notes in Math. , vol. 1976, Springer, Dordrechtheidelberg-London-New York, 2009.
doi: 10.1007/978-3-642-01570-0. |
[17] |
W. Gong and G. Lu,
On Dirac equation with a potential and critical Sobolev exponent, Commun. Pure Appl. Anal., 14 (2015), 2231-2263.
doi: 10.3934/cpaa.2015.14.2231. |
[18] |
J. Hulshof and R. van der Vorst,
Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.
doi: 10.1006/jfan.1993.1062. |
[19] |
T. Isobe,
Existence results for solutions to nonlinear Dirac equations on compact spin manifolds, Manuscripta math, 135 (2011), 329-360.
doi: 10.1007/s00229-010-0417-6. |
[20] |
T. Isobe,
Nonlinear Dirac equations with critical nonlinearities on compact spin manifolds, J.Funct. Anal., 260 (2011), 253-307.
doi: 10.1016/j.jfa.2010.09.008. |
[21] |
W. Kryszewski and A. Szulkin,
Generalized linking theorem with an application to a semilinear Schröinger equation, Adv. Differential Equations, 3 (1998), 441-472.
|
[22] |
H. B. Lawson and M. L. Michelson, Spin Geometry, Princeton University Press, 1989. |
[23] |
P. H. Rabinowitz,
Periodic solutions of Hamiltonian systems, Commun. Pure Appl. Math., 31 (1978), 157-184.
doi: 10.1002/cpa.3160310203. |
[24] |
S. Raulot,
A Sobolev-like inequality for the Dirac operator, J. Funct. Anal., 256 (2009), 1588-1617.
doi: 10.1016/j.jfa.2008.11.007. |
[25] |
M. Willem, Minimax Theorems, Birkhäser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1. |
show all references
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Space, 2nd edition, Elsevier/Academic Press, Amsterdam, 2003. |
[2] |
B. Ammann, A variational Problem in Conformal Spin Geometry, Ph. D thesis, Habilitationsschift, Universität Hamburg 2003. Google Scholar |
[3] |
B. Ammann,
The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions, Commun. Anal. Geom., 17 (2009), 429-479.
doi: 10.4310/CAG.2009.v17.n3.a2. |
[4] |
S. Angenent and R. van der Vorst,
A superquadratic indefinite elliptic system and its MorseConley-Floer homology, Math. Z., 231 (1999), 203-248.
doi: 10.1007/PL00004731. |
[5] |
T. Bartsch and Y. Ding,
Homoclinic solutions of an infinite-dimensional Hamiltonian system, Math. Z., 240 (2002), 289-310.
doi: 10.1007/s002090100383. |
[6] |
T. Bartsch and Y. Ding,
Periodic solutions of superlinear beam and membrane equations with perturbations from symmetry, Nonlinear Analysis, 44 (2001), 727-748.
doi: 10.1016/S0362-546X(99)00302-8. |
[7] |
T. Bartsch,
Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal., 20 (1993), 1205-1216.
doi: 10.1016/0362-546X(93)90151-H. |
[8] |
C. J. Batkam and F. Colin,
Generalized fountain theorem and applications to strongly indefinite semilinear problems, J. Math. Anal. Appl., 405 (2013), 438-452.
doi: 10.1016/j.jmaa.2013.04.018. |
[9] |
V. Benci and P. H. Rabinowitz,
Critical point theorems for indefinite functionals, Invent. Math., 52 (1979), 241-273.
doi: 10.1007/BF01389883. |
[10] |
Q. Chen, J. Jost, J. Li and G. Wang,
Dirac-harmonic maps, Math. Z., 254 (2006), 409-432.
doi: 10.1007/s00209-006-0961-7. |
[11] |
Q. Chen, J. Jost and G. Wang,
Nonlinear Dirac equations on Riemann surfaces, Ann. Global Anal. Geom., 33 (2008), 253-270.
doi: 10.1007/s10455-007-9084-6. |
[12] |
P. Felmer and D. G. deFigueiredo,
On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 99-116.
doi: 10.1090/S0002-9947-1994-1214781-2. |
[13] |
P. Felmer,
Periodic solutions of 'superquadratic' Hamiltonian systems, J. Differential Equations, 102 (1993), 188-207.
doi: 10.1006/jdeq.1993.1027. |
[14] |
T. Friedrich, Dirac Operators in Riemannian Geometry, Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 1997.
doi: 10.1090/gsm/025. |
[15] |
T. Friedrich,
On the spinor representation of surfaces in Euclidean 3-space, J. Geom. Phy., 28 (1998), 143-157.
doi: 10.1016/S0393-0440(98)00018-7. |
[16] |
N. Ginoux, The Dirac Spectrum, Lecture Notes in Math. , vol. 1976, Springer, Dordrechtheidelberg-London-New York, 2009.
doi: 10.1007/978-3-642-01570-0. |
[17] |
W. Gong and G. Lu,
On Dirac equation with a potential and critical Sobolev exponent, Commun. Pure Appl. Anal., 14 (2015), 2231-2263.
doi: 10.3934/cpaa.2015.14.2231. |
[18] |
J. Hulshof and R. van der Vorst,
Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.
doi: 10.1006/jfan.1993.1062. |
[19] |
T. Isobe,
Existence results for solutions to nonlinear Dirac equations on compact spin manifolds, Manuscripta math, 135 (2011), 329-360.
doi: 10.1007/s00229-010-0417-6. |
[20] |
T. Isobe,
Nonlinear Dirac equations with critical nonlinearities on compact spin manifolds, J.Funct. Anal., 260 (2011), 253-307.
doi: 10.1016/j.jfa.2010.09.008. |
[21] |
W. Kryszewski and A. Szulkin,
Generalized linking theorem with an application to a semilinear Schröinger equation, Adv. Differential Equations, 3 (1998), 441-472.
|
[22] |
H. B. Lawson and M. L. Michelson, Spin Geometry, Princeton University Press, 1989. |
[23] |
P. H. Rabinowitz,
Periodic solutions of Hamiltonian systems, Commun. Pure Appl. Math., 31 (1978), 157-184.
doi: 10.1002/cpa.3160310203. |
[24] |
S. Raulot,
A Sobolev-like inequality for the Dirac operator, J. Funct. Anal., 256 (2009), 1588-1617.
doi: 10.1016/j.jfa.2008.11.007. |
[25] |
M. Willem, Minimax Theorems, Birkhäser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[1] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374 |
[2] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[3] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3021-3029. doi: 10.3934/dcds.2020395 |
[4] |
Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25 |
[5] |
Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021005 |
[6] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[7] |
Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021098 |
[8] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056 |
[9] |
Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254 |
[10] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[11] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[12] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[13] |
Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021019 |
[14] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[15] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[16] |
Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270 |
[17] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382 |
[18] |
Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021056 |
[19] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[20] |
Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]