-
Previous Article
Statistical and deterministic dynamics of maps with memory
- DCDS Home
- This Issue
-
Next Article
Orbital stability and uniqueness of the ground state for the non-linear Schrödinger equation in dimension one
On coupled Dirac systems
1. | Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China |
2. | School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China |
$\left\{ \begin{aligned}Du=\frac{\partial H}{\partial v}(x,u,v)\hspace{4mm} {\rm on}\hspace{2mm}M,\\Dv=\frac{\partial H}{\partial u}(x,u,v)\hspace{4mm} {\rm on}\hspace{2mm}M,\end{aligned} \right.$ |
$H(x,u,v)=f(x)\frac{|u|^{p+1}}{p+1}+g(x)\frac{|v|^{q+1}}{q+1},$ |
$\frac{1}{p+1}+\frac{1}{q+1}>\frac{n-1}{n}.$ |
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Space, 2nd edition, Elsevier/Academic Press, Amsterdam, 2003. |
[2] |
B. Ammann, A variational Problem in Conformal Spin Geometry, Ph. D thesis, Habilitationsschift, Universität Hamburg 2003. |
[3] |
B. Ammann,
The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions, Commun. Anal. Geom., 17 (2009), 429-479.
doi: 10.4310/CAG.2009.v17.n3.a2. |
[4] |
S. Angenent and R. van der Vorst,
A superquadratic indefinite elliptic system and its MorseConley-Floer homology, Math. Z., 231 (1999), 203-248.
doi: 10.1007/PL00004731. |
[5] |
T. Bartsch and Y. Ding,
Homoclinic solutions of an infinite-dimensional Hamiltonian system, Math. Z., 240 (2002), 289-310.
doi: 10.1007/s002090100383. |
[6] |
T. Bartsch and Y. Ding,
Periodic solutions of superlinear beam and membrane equations with perturbations from symmetry, Nonlinear Analysis, 44 (2001), 727-748.
doi: 10.1016/S0362-546X(99)00302-8. |
[7] |
T. Bartsch,
Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal., 20 (1993), 1205-1216.
doi: 10.1016/0362-546X(93)90151-H. |
[8] |
C. J. Batkam and F. Colin,
Generalized fountain theorem and applications to strongly indefinite semilinear problems, J. Math. Anal. Appl., 405 (2013), 438-452.
doi: 10.1016/j.jmaa.2013.04.018. |
[9] |
V. Benci and P. H. Rabinowitz,
Critical point theorems for indefinite functionals, Invent. Math., 52 (1979), 241-273.
doi: 10.1007/BF01389883. |
[10] |
Q. Chen, J. Jost, J. Li and G. Wang,
Dirac-harmonic maps, Math. Z., 254 (2006), 409-432.
doi: 10.1007/s00209-006-0961-7. |
[11] |
Q. Chen, J. Jost and G. Wang,
Nonlinear Dirac equations on Riemann surfaces, Ann. Global Anal. Geom., 33 (2008), 253-270.
doi: 10.1007/s10455-007-9084-6. |
[12] |
P. Felmer and D. G. deFigueiredo,
On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 99-116.
doi: 10.1090/S0002-9947-1994-1214781-2. |
[13] |
P. Felmer,
Periodic solutions of 'superquadratic' Hamiltonian systems, J. Differential Equations, 102 (1993), 188-207.
doi: 10.1006/jdeq.1993.1027. |
[14] |
T. Friedrich, Dirac Operators in Riemannian Geometry, Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 1997.
doi: 10.1090/gsm/025. |
[15] |
T. Friedrich,
On the spinor representation of surfaces in Euclidean 3-space, J. Geom. Phy., 28 (1998), 143-157.
doi: 10.1016/S0393-0440(98)00018-7. |
[16] |
N. Ginoux, The Dirac Spectrum, Lecture Notes in Math. , vol. 1976, Springer, Dordrechtheidelberg-London-New York, 2009.
doi: 10.1007/978-3-642-01570-0. |
[17] |
W. Gong and G. Lu,
On Dirac equation with a potential and critical Sobolev exponent, Commun. Pure Appl. Anal., 14 (2015), 2231-2263.
doi: 10.3934/cpaa.2015.14.2231. |
[18] |
J. Hulshof and R. van der Vorst,
Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.
doi: 10.1006/jfan.1993.1062. |
[19] |
T. Isobe,
Existence results for solutions to nonlinear Dirac equations on compact spin manifolds, Manuscripta math, 135 (2011), 329-360.
doi: 10.1007/s00229-010-0417-6. |
[20] |
T. Isobe,
Nonlinear Dirac equations with critical nonlinearities on compact spin manifolds, J.Funct. Anal., 260 (2011), 253-307.
doi: 10.1016/j.jfa.2010.09.008. |
[21] |
W. Kryszewski and A. Szulkin,
Generalized linking theorem with an application to a semilinear Schröinger equation, Adv. Differential Equations, 3 (1998), 441-472.
|
[22] |
H. B. Lawson and M. L. Michelson, Spin Geometry, Princeton University Press, 1989. |
[23] |
P. H. Rabinowitz,
Periodic solutions of Hamiltonian systems, Commun. Pure Appl. Math., 31 (1978), 157-184.
doi: 10.1002/cpa.3160310203. |
[24] |
S. Raulot,
A Sobolev-like inequality for the Dirac operator, J. Funct. Anal., 256 (2009), 1588-1617.
doi: 10.1016/j.jfa.2008.11.007. |
[25] |
M. Willem, Minimax Theorems, Birkhäser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1. |
show all references
References:
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Space, 2nd edition, Elsevier/Academic Press, Amsterdam, 2003. |
[2] |
B. Ammann, A variational Problem in Conformal Spin Geometry, Ph. D thesis, Habilitationsschift, Universität Hamburg 2003. |
[3] |
B. Ammann,
The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions, Commun. Anal. Geom., 17 (2009), 429-479.
doi: 10.4310/CAG.2009.v17.n3.a2. |
[4] |
S. Angenent and R. van der Vorst,
A superquadratic indefinite elliptic system and its MorseConley-Floer homology, Math. Z., 231 (1999), 203-248.
doi: 10.1007/PL00004731. |
[5] |
T. Bartsch and Y. Ding,
Homoclinic solutions of an infinite-dimensional Hamiltonian system, Math. Z., 240 (2002), 289-310.
doi: 10.1007/s002090100383. |
[6] |
T. Bartsch and Y. Ding,
Periodic solutions of superlinear beam and membrane equations with perturbations from symmetry, Nonlinear Analysis, 44 (2001), 727-748.
doi: 10.1016/S0362-546X(99)00302-8. |
[7] |
T. Bartsch,
Infinitely many solutions of a symmetric Dirichlet problem, Nonlinear Anal., 20 (1993), 1205-1216.
doi: 10.1016/0362-546X(93)90151-H. |
[8] |
C. J. Batkam and F. Colin,
Generalized fountain theorem and applications to strongly indefinite semilinear problems, J. Math. Anal. Appl., 405 (2013), 438-452.
doi: 10.1016/j.jmaa.2013.04.018. |
[9] |
V. Benci and P. H. Rabinowitz,
Critical point theorems for indefinite functionals, Invent. Math., 52 (1979), 241-273.
doi: 10.1007/BF01389883. |
[10] |
Q. Chen, J. Jost, J. Li and G. Wang,
Dirac-harmonic maps, Math. Z., 254 (2006), 409-432.
doi: 10.1007/s00209-006-0961-7. |
[11] |
Q. Chen, J. Jost and G. Wang,
Nonlinear Dirac equations on Riemann surfaces, Ann. Global Anal. Geom., 33 (2008), 253-270.
doi: 10.1007/s10455-007-9084-6. |
[12] |
P. Felmer and D. G. deFigueiredo,
On superquadratic elliptic systems, Trans. Amer. Math. Soc., 343 (1994), 99-116.
doi: 10.1090/S0002-9947-1994-1214781-2. |
[13] |
P. Felmer,
Periodic solutions of 'superquadratic' Hamiltonian systems, J. Differential Equations, 102 (1993), 188-207.
doi: 10.1006/jdeq.1993.1027. |
[14] |
T. Friedrich, Dirac Operators in Riemannian Geometry, Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig, 1997.
doi: 10.1090/gsm/025. |
[15] |
T. Friedrich,
On the spinor representation of surfaces in Euclidean 3-space, J. Geom. Phy., 28 (1998), 143-157.
doi: 10.1016/S0393-0440(98)00018-7. |
[16] |
N. Ginoux, The Dirac Spectrum, Lecture Notes in Math. , vol. 1976, Springer, Dordrechtheidelberg-London-New York, 2009.
doi: 10.1007/978-3-642-01570-0. |
[17] |
W. Gong and G. Lu,
On Dirac equation with a potential and critical Sobolev exponent, Commun. Pure Appl. Anal., 14 (2015), 2231-2263.
doi: 10.3934/cpaa.2015.14.2231. |
[18] |
J. Hulshof and R. van der Vorst,
Differential systems with strongly indefinite variational structure, J. Funct. Anal., 114 (1993), 32-58.
doi: 10.1006/jfan.1993.1062. |
[19] |
T. Isobe,
Existence results for solutions to nonlinear Dirac equations on compact spin manifolds, Manuscripta math, 135 (2011), 329-360.
doi: 10.1007/s00229-010-0417-6. |
[20] |
T. Isobe,
Nonlinear Dirac equations with critical nonlinearities on compact spin manifolds, J.Funct. Anal., 260 (2011), 253-307.
doi: 10.1016/j.jfa.2010.09.008. |
[21] |
W. Kryszewski and A. Szulkin,
Generalized linking theorem with an application to a semilinear Schröinger equation, Adv. Differential Equations, 3 (1998), 441-472.
|
[22] |
H. B. Lawson and M. L. Michelson, Spin Geometry, Princeton University Press, 1989. |
[23] |
P. H. Rabinowitz,
Periodic solutions of Hamiltonian systems, Commun. Pure Appl. Math., 31 (1978), 157-184.
doi: 10.1002/cpa.3160310203. |
[24] |
S. Raulot,
A Sobolev-like inequality for the Dirac operator, J. Funct. Anal., 256 (2009), 1588-1617.
doi: 10.1016/j.jfa.2008.11.007. |
[25] |
M. Willem, Minimax Theorems, Birkhäser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[1] |
Viktor L. Ginzburg and Basak Z. Gurel. The Generalized Weinstein--Moser Theorem. Electronic Research Announcements, 2007, 14: 20-29. doi: 10.3934/era.2007.14.20 |
[2] |
Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023 |
[3] |
Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055 |
[4] |
Siniša Slijepčević. The Aubry-Mather theorem for driven generalized elastic chains. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2983-3011. doi: 10.3934/dcds.2014.34.2983 |
[5] |
Tatsien Li, Bopeng Rao, Yimin Wei. Generalized exact boundary synchronization for a coupled system of wave equations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2893-2905. doi: 10.3934/dcds.2014.34.2893 |
[6] |
Denis Blackmore, Jyoti Champanerkar, Chengwen Wang. A generalized Poincaré-Birkhoff theorem with applications to coaxial vortex ring motion. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 15-33. doi: 10.3934/dcdsb.2005.5.15 |
[7] |
Rodolfo Ríos-Zertuche. Characterization of minimizable Lagrangian action functionals and a dual Mather theorem. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2615-2639. doi: 10.3934/dcds.2020143 |
[8] |
Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler. On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 787-802. doi: 10.3934/mbe.2013.10.787 |
[9] |
Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248 |
[10] |
Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure and Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855 |
[11] |
Ben Muatjetjeja, Dimpho Millicent Mothibi, Chaudry Masood Khalique. Lie group classification a generalized coupled (2+1)-dimensional hyperbolic system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2803-2812. doi: 10.3934/dcdss.2020219 |
[12] |
Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control and Related Fields, 2011, 1 (3) : 353-389. doi: 10.3934/mcrf.2011.1.353 |
[13] |
Fan Jiang, Zhongming Wu, Xingju Cai. Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization. Journal of Industrial and Management Optimization, 2020, 16 (2) : 835-856. doi: 10.3934/jimo.2018181 |
[14] |
Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067 |
[15] |
Ze Cheng, Genggeng Huang. A Liouville theorem for the subcritical Lane-Emden system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1359-1377. doi: 10.3934/dcds.2019058 |
[16] |
Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155 |
[17] |
Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555 |
[18] |
Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236 |
[19] |
Xian-gao Liu, Xiaotao Zhang. Liouville theorem for MHD system and its applications. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2329-2350. doi: 10.3934/cpaa.2018111 |
[20] |
Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Aneta Wróblewska. Generalized Stokes system in Orlicz spaces. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2125-2146. doi: 10.3934/dcds.2012.32.2125 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]