For diffeomorphisms of line, we set up the identities between their length growth rate and their entropy. Then, we prove that there is $C^0$-open and $C^r$-dense subset $\mathcal{U}$ of $\text{Diff}^r (\mathbb{R})$ with bounded first derivative, $r=1,2,\cdots$, $+\infty$, such that the entropy map with respect to strong $C^0$-topology is continuous on $\mathcal{U}$; moreover, for any $f \in \mathcal{U}$, if it is uniformly expanding or $h(f)=0$, then the entropy map is locally constant at $f$.
Also, we construct two examples:
1. there exists open subset $\mathcal{U}$ of $\text{Diff}^{\infty} (\mathbb{R})$ such that for any $f \in \mathcal{U}$, the entropy map with respect to strong $C^{\infty}$-topology, is not locally constant at $f$.
2. there exists $f \in \text{Diff}^{\infty}(\mathbb{R})$ such that the entropy map with respect to strong $C^{\infty}$-topology, is neither lower semi-continuous nor upper semi-continuous at $f$.
Citation: |
C. Bonatti, L. J. Díaz and M. Viana,
Dynamics Beyond Uniform Hyperbolicity (A Global Geometric and Probabilistic Perspective), Encyclopaedia of Mathematical Sciences, 102. Mathematical Physics, Ⅲ. Springer-Verlag, Berlin, 2005.
![]() ![]() |
|
S. Crovisier
, Birth of homoclinic intersections: A model for the central dynamics of partially hyperbolic systems, Ann. of Math., 172 (2010)
, 1641-1677.
doi: 10.4007/annals.2010.172.1641.![]() ![]() ![]() |
|
B. He, Entropy of diffeomorphisms with unbounded derivatives, In preparing.
![]() |
|
J. Milnor
and W. Thurston
, On iterated maps of the interval, Dynamical Systems, 1342 (1988)
, Springer Lecture Note in Mathematics, 465-563.
doi: 10.1007/BFb0082847.![]() ![]() ![]() |
|
M. Misiurewicz
and W. Szlenk
, Entropy of piecewise monotone mappings, Studia Math., 67 (1980)
, 45-63.
![]() ![]() |
|
S. Newhouse
, Continuity properties of entropy, Ann. of Math., 129 (1989)
, 215-235.
doi: 10.2307/1971492.![]() ![]() ![]() |
|
R. Saghin
and J. Yang
, Continuity of topological entropy for perturbation of time-one maps of hyperbolic flows, Israel J. Math., 215 (2016)
, 857-875.
doi: 10.1007/s11856-016-1396-4.![]() ![]() ![]() |
|
P. Walters,
Ergodic Theory-Introductory Lectures, Lecture Notes in Mathematics, Vol. 458. Springer-Verlag, Berlin-New York, 1975.
![]() ![]() |
|
Y. Yomdin
, Volume growth and entropy, Israel J. Math., 57 (1987)
, 285-300.
doi: 10.1007/BF02766215.![]() ![]() ![]() |