We prove a Caccioppoli type inequality for the solution of a parabolic system related to the nonlinear Stokes problem. Using the method of Caccioppoli type inequality, we also establish the existence of weak solutions satisfying a local energy inequality without pressure for the non-Newtonian Navier-Stokes equations.
Citation: |
H. Amman
, Stability of the rest state of viscous incompressible fluid, Arch. Rat. Mech. Anal., 126 (1994)
, 231-242.
doi: 10.1007/BF00375643.![]() ![]() ![]() |
|
H.-O. Bae
and J.-B. Jin
, Regularity of Non-Newtonian fluids, J. Math. Fluid Mech., 16 (2014)
, 225-241.
doi: 10.1007/s00021-013-0149-y.![]() ![]() ![]() |
|
H. Beirão da Veiga
, On the regularity of flows with Ladyzhenskaya Shear-dependent viscosity and slip or nonslip boundary conditions, Comm. Pure Appl. Math., 58 (2005)
, 552-577.
doi: 10.1002/cpa.20036.![]() ![]() ![]() |
|
H. Beirão da Veiga
, On some boundary value problems for incompressible viscous flows with Shear dependent viscosity, Progress in Nonlinear Differentail Equations, 63 (2005)
, 23-32.
doi: 10.1007/3-7643-7384-9_3.![]() ![]() ![]() |
|
H. Beirão da Veiga
, P. Kaplický
and M. Ružička
, Boundary regularity of shear thickening flows, J. Math. Fluid Mech., 13 (2011)
, 387-404.
doi: 10.1007/s00021-010-0025-y.![]() ![]() ![]() |
|
H. Bellout
, F. Bloom
and J. Nečas
, Young Measure-Valued Solutions for Non-Newtonian Incompressible Fluids, Comm. in PDE, 19 (1994)
, 1763-1803.
doi: 10.1080/03605309408821073.![]() ![]() ![]() |
|
L. C. Berselli
, L. Diening
and M. Ružička
, Existence of strong solutions for incompressible fluids with shear dependent viscosities, J. Math. Fluid Mech., 12 (2010)
, 101-132.
doi: 10.1007/s00021-008-0277-y.![]() ![]() ![]() |
|
D. Bothe
and J. Prüss
, Lp-theory for a class of non-Newtonian fluids, SIAM J. Math. Anal., 39 (2007)
, 379-421.
doi: 10.1137/060663635.![]() ![]() ![]() |
|
M. Buliček
, F. Ettwein
, P. Kaplický
and D. Pražák
, On uniqueness and time regularity of flows of power-law like non-Newtonian fluids, Math. Methods Appl. Sci., 33 (2010)
, 1995-2010.
doi: 10.1002/mma.1314.![]() ![]() ![]() |
|
H. J. Choe
and M. Yang
, Hausdorff measure of the singular set in the incompressible magnetohydrodynamic equations, Comm. Math. phys., 336 (2015)
, 171-198.
doi: 10.1007/s00220-015-2307-y.![]() ![]() ![]() |
|
L. Diening
and M. Ružička
, Strong solutions for generalized Newtonian fluids, J. Math. Fluid Mech., 7 (2005)
, 413-450.
doi: 10.1007/s00021-004-0124-8.![]() ![]() ![]() |
|
L. Diening
, M. Ruzicka
and J. Wolf
, Existence of weak solutions for unsteady motions of generalized newtonian fluids, Ann. Sc. Norm. Super. Pisa cl. Sci. (5), 9 (2010)
, 1-46.
![]() ![]() |
|
M. Fuchs
and G. A. Seregin
, A global nonlinear evolution problem for generalized Newtonian fluids: Local initial regularity of the strong solution, Comput. Math. Appl., 53 (2007)
, 509-520.
doi: 10.1016/j.camwa.2006.02.039.![]() ![]() ![]() |
|
M. Fuchs and G. A. Seregin, Existence of global solutions for a parabolic system related to
the nonlinear Stokes problem, Zap. Nauchn. Sem. S. -Peterburg. Otdel. Mat. Inst. Steklov.
(POMI), 348 (2007), Kraevye Zadachi Matematicheskoi Fiziki i Smezhnye Voprosy Teorii
Funktsii. 38,254–271,306; translation in J. Math. Sci. (N. Y. ) 152 (2008), 769–779.
doi: 10.1007/s10958-008-9088-1.![]() ![]() ![]() |
|
M. Fuchs
and G. Zhang
, Liouville theorems for entire local minimizers of energies defined on the class L log L and for entire solutions of the stationary Prandtl-Eyring fluid model, calc. Var. Partial Differential Equations, 44 (2012)
, 271-295.
doi: 10.1007/s00526-011-0434-7.![]() ![]() ![]() |
|
M. Giaquinta
and G. Modica
, Nonlinear systems of the type of the stationary Navier-Stokes system, J. Reine Angew. Math., 330 (1982)
, 173-214.
![]() ![]() |
|
B. J. Jin
, On the caccioppoli inequality of the unsteady Stokes system, Int. J. Numer. Anal. Model. Ser. B, 4 (2013)
, 215-223.
![]() ![]() |
|
O. A. Ladyženskaya
, New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems, Trudy Mat. Inst. Steklov., 102 (1967)
, 85-104.
![]() ![]() |
|
O. A. Ladyženskaya
, Modifications of the Navier-Stokes equations for large gradients of the velocities, Zapiski Naukhnych Seminarov LOMI, 7 (1968)
, 126-154.
![]() ![]() |
|
O. A. Ladyženskaya,
The Mathematical Theory of Viscous Incompressible Flow, Gordon and Beach, New York, 1969.
![]() ![]() |
|
J. L. Lions,
Quelques Methodes de Résolution de Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.
![]() ![]() |
|
J. Málek, J. Nečas, M. Rokyta and M. Ružička,
Weak and Measure-Valued Solutions to Evolutionary PDEs, Applied Mathematics and Mathematical computation, 13. chapman & Hall, London, 1996.
doi: 10.1007/978-1-4899-6824-1.![]() ![]() ![]() |
|
J. Málek
, J. Nečas
and M. Ružička
, On the non-Newtonian incompressible fluids, Math.
Models Methods Appl. Sci., 3 (1993)
, 35-63.
doi: 10.1142/S0218202593000047.![]() ![]() ![]() |
|
J. Málek
, J. Nečas
and M. Ružička
, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p ≥ 2, Adv. Differential Equations, 6 (2001)
, 257-302.
![]() ![]() |
|
J. Málek
, D. Pražák
and M. Steinhauer
, On the Existence and Regularity of solutions for degenerate power-law fluids, Differential Integral Equations, 19 (2006)
, 449-462.
![]() ![]() |
|
J. Wolf
, Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, J. Math. Fluid Mech., 9 (2007)
, 104-138.
doi: 10.1007/s00021-006-0219-5.![]() ![]() ![]() |
|
J. Wolf, A new criterion for partial regularity of suitable weak solutions to the Navier-Stokes
equations, in Advances in mathematical fluid mechanics, Springer, Berlin, (2010), 613–630.
![]() ![]() |
|
J. Wolf
, On the local regularity of suitable weak solutions to the generalized Navier-Stokes equations, Ann. Univ. Ferrara Sez. Ⅶ Sci. Mat., 61 (2015)
, 149-171.
doi: 10.1007/s11565-014-0203-6.![]() ![]() ![]() |