-
Previous Article
Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions
- DCDS Home
- This Issue
-
Next Article
Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials
Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation
1. | School of Mathematical Sciences and Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China |
2. | School of Statistics and Mathematics, Shanghai Lixin University of Accounting and Finance, Shanghai 201209, China |
In this paper we prove the almost sure existence of global weak solution to the 3D incompressible Navier-Stokes Equation for a set of large data in $\dot{H}^{-α}(\mathbb{R}^{3})$ or $\dot{H}^{-α}(\mathbb{T}^{3})$ with $0<α≤ 1/2$. This is achieved by randomizing the initial data and showing that the energy of the solution modulus the linear part keeps finite for all $t≥0$. Moreover, the energy of the solutions is also finite for all $t>0$. This improves the recent result of Nahmod, Pavlović and Staffilani on (SIMA) in which $α$ is restricted to $0<α<\frac{1}{4}$.
References:
[1] |
Á. Bényi, T. Oh and O. Pocovinicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, Excursions in Harmonic Analysis, Appl.
Numer. Harmon. Anal. , Birkhäuser/Springer, Cham, 4 (2015), 3-25. |
[2] |
Á. Bényi, T. Oh and O. Pocovinicu,
On the probabilistic Cauchy theory of the cubic nonlinear Schrodinger equation on $\mathbb{R}^{d}, d≥ 3$, Trans. Amer. Math. Soc. Ser. B, 2 (2015), 1-50.
doi: 10.1090/btran/6. |
[3] |
J. Bourgain,
Invariant measures for the 2D defocusing nonliear Schrödinger equation, Comm. Math. Phys., 176 (1996), 421-445.
doi: 10.1007/BF02099556. |
[4] |
N. Burq and N. Tzvetkov,
Random Data Cauchy theory for supercritical wave equation Ⅰ:Local theory, Invent. Math., 173 (2008), 449-475.
doi: 10.1007/s00222-008-0124-z. |
[5] |
N. Burq and N. Tzvetkov,
Random Data Cauchy theory for supercritical wave equation Ⅱ:A global existence result, Invent. Math., 173 (2008), 477-496.
doi: 10.1007/s00222-008-0123-0. |
[6] |
N. Burq and N. Tzvetkov,
Probabilistic Well-Posedness for the Cubic Wave Equation, J. Eur. Math. Soc., 16 (2014), 1-30.
doi: 10.4171/JEMS/426. |
[7] |
C. Deng and S. Cui,
Random data Cauchy problem for the Navier-Stokes equation on $\mathbb{T}^{3}$, J.Differential Equation, 251 (2011), 902-917.
doi: 10.1016/j.jde.2011.05.002. |
[8] |
E. Hopf,
Über die Aufgangswertaufgabe für die hydrodynamischen Grundliechungen, Math. Nachr., 4 (1951), 213-231.
doi: 10.1002/mana.3210040121. |
[9] |
P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman Hall/CRC Res. Notes Math. 431, Chapman & Hall/CTC, Boca Raton, FL, 2002.
doi: 10.1201/9781420035674. |
[10] |
J. Leray,
Essai sur mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[11] |
J. Lührmann and D. Mendelson,
Random data Cauchy theory for nonlinear wave equations of Power-Type on $\mathbb{R}^{3}$, Comm. Partial Differential Equations, 39 (2014), 2262-2283.
doi: 10.1080/03605302.2014.933239. |
[12] |
A. R. Nahmod, N. Pavlović and G. Staffilani,
Almost sure existence of global weak solutions for supercritical Navier-Stokes equation, SIAM J. Math. Anal., 45 (2013), 3431-3452.
doi: 10.1137/120882184. |
[13] |
R. E. A. C. Paley and A. Zygmund, On some series of functions (1)(2)(3), Proc. Camb. Philos. Soc., 26 (1930), 337-357,458-474; 28 (1932), 190-205. |
[14] |
R. Témam, Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2. North-Holland Publishing Co. , Amsterdam-New York, 1979. |
[15] |
T. Zhang and D. Fang,
Random data Cauchy theory for the generalized incompressible Navier-Stokes equations, J. Math. Fluid Mech., 14 (2012), 311-324.
doi: 10.1007/s00021-011-0069-7. |
[16] |
T. Zhang and D. Fang,
Random data Cauchy theory for the incompressible three dimensional Navier-Stokes Equation, Proc. Amer. Math. Soc., 139 (2011), 2827-2837.
doi: 10.1090/S0002-9939-2011-10762-7. |
show all references
References:
[1] |
Á. Bényi, T. Oh and O. Pocovinicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, Excursions in Harmonic Analysis, Appl.
Numer. Harmon. Anal. , Birkhäuser/Springer, Cham, 4 (2015), 3-25. |
[2] |
Á. Bényi, T. Oh and O. Pocovinicu,
On the probabilistic Cauchy theory of the cubic nonlinear Schrodinger equation on $\mathbb{R}^{d}, d≥ 3$, Trans. Amer. Math. Soc. Ser. B, 2 (2015), 1-50.
doi: 10.1090/btran/6. |
[3] |
J. Bourgain,
Invariant measures for the 2D defocusing nonliear Schrödinger equation, Comm. Math. Phys., 176 (1996), 421-445.
doi: 10.1007/BF02099556. |
[4] |
N. Burq and N. Tzvetkov,
Random Data Cauchy theory for supercritical wave equation Ⅰ:Local theory, Invent. Math., 173 (2008), 449-475.
doi: 10.1007/s00222-008-0124-z. |
[5] |
N. Burq and N. Tzvetkov,
Random Data Cauchy theory for supercritical wave equation Ⅱ:A global existence result, Invent. Math., 173 (2008), 477-496.
doi: 10.1007/s00222-008-0123-0. |
[6] |
N. Burq and N. Tzvetkov,
Probabilistic Well-Posedness for the Cubic Wave Equation, J. Eur. Math. Soc., 16 (2014), 1-30.
doi: 10.4171/JEMS/426. |
[7] |
C. Deng and S. Cui,
Random data Cauchy problem for the Navier-Stokes equation on $\mathbb{T}^{3}$, J.Differential Equation, 251 (2011), 902-917.
doi: 10.1016/j.jde.2011.05.002. |
[8] |
E. Hopf,
Über die Aufgangswertaufgabe für die hydrodynamischen Grundliechungen, Math. Nachr., 4 (1951), 213-231.
doi: 10.1002/mana.3210040121. |
[9] |
P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman Hall/CRC Res. Notes Math. 431, Chapman & Hall/CTC, Boca Raton, FL, 2002.
doi: 10.1201/9781420035674. |
[10] |
J. Leray,
Essai sur mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193-248.
doi: 10.1007/BF02547354. |
[11] |
J. Lührmann and D. Mendelson,
Random data Cauchy theory for nonlinear wave equations of Power-Type on $\mathbb{R}^{3}$, Comm. Partial Differential Equations, 39 (2014), 2262-2283.
doi: 10.1080/03605302.2014.933239. |
[12] |
A. R. Nahmod, N. Pavlović and G. Staffilani,
Almost sure existence of global weak solutions for supercritical Navier-Stokes equation, SIAM J. Math. Anal., 45 (2013), 3431-3452.
doi: 10.1137/120882184. |
[13] |
R. E. A. C. Paley and A. Zygmund, On some series of functions (1)(2)(3), Proc. Camb. Philos. Soc., 26 (1930), 337-357,458-474; 28 (1932), 190-205. |
[14] |
R. Témam, Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2. North-Holland Publishing Co. , Amsterdam-New York, 1979. |
[15] |
T. Zhang and D. Fang,
Random data Cauchy theory for the generalized incompressible Navier-Stokes equations, J. Math. Fluid Mech., 14 (2012), 311-324.
doi: 10.1007/s00021-011-0069-7. |
[16] |
T. Zhang and D. Fang,
Random data Cauchy theory for the incompressible three dimensional Navier-Stokes Equation, Proc. Amer. Math. Soc., 139 (2011), 2827-2837.
doi: 10.1090/S0002-9939-2011-10762-7. |
[1] |
Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67 |
[2] |
Joel Avrin. Global existence and regularity for the Lagrangian averaged Navier-Stokes equations with initial data in $H^{1//2}$. Communications on Pure and Applied Analysis, 2004, 3 (3) : 353-366. doi: 10.3934/cpaa.2004.3.353 |
[3] |
Keyan Wang, Yao Xiao. Local well-posedness for Navier-Stokes equations with a class of ill-prepared initial data. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2987-3011. doi: 10.3934/dcds.2020158 |
[4] |
Xinhua Zhao, Zilai Li. Asymptotic behavior of spherically or cylindrically symmetric solutions to the compressible Navier-Stokes equations with large initial data. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1421-1448. doi: 10.3934/cpaa.2020052 |
[5] |
Fuzhi Li, Dongmei Xu, Jiali Yu. Regular measurable backward compact random attractor for $ g $-Navier-Stokes equation. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3137-3157. doi: 10.3934/cpaa.2020136 |
[6] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5421-5448. doi: 10.3934/dcdsb.2020352 |
[7] |
Kuijie Li, Tohru Ozawa, Baoxiang Wang. Dynamical behavior for the solutions of the Navier-Stokes equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1511-1560. doi: 10.3934/cpaa.2018073 |
[8] |
C. Foias, M. S Jolly, I. Kukavica, E. S. Titi. The Lorenz equation as a metaphor for the Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 403-429. doi: 10.3934/dcds.2001.7.403 |
[9] |
Paolo Maremonti. A note on the Navier-Stokes IBVP with small data in $L^n$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 255-267. doi: 10.3934/dcdss.2016.9.255 |
[10] |
Manil T. Mohan, Sivaguru S. Sritharan. $\mathbb{L}^p-$solutions of the stochastic Navier-Stokes equations subject to Lévy noise with $\mathbb{L}^m(\mathbb{R}^m)$ initial data. Evolution Equations and Control Theory, 2017, 6 (3) : 409-425. doi: 10.3934/eect.2017021 |
[11] |
Yuning Liu, Wei Wang. On the initial boundary value problem of a Navier-Stokes/$Q$-tensor model for liquid crystals. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3879-3899. doi: 10.3934/dcdsb.2018115 |
[12] |
Guangrong Wu, Ping Zhang. The zero diffusion limit of 2-D Navier-Stokes equations with $L^1$ initial vorticity. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 631-638. doi: 10.3934/dcds.1999.5.631 |
[13] |
Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135 |
[14] |
I. Moise, Roger Temam. Renormalization group method: Application to Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 191-210. doi: 10.3934/dcds.2000.6.191 |
[15] |
Xueke Pu, Min Li. Asymptotic behaviors for the full compressible quantum Navier-Stokes-Maxwell equations with general initial data. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5149-5181. doi: 10.3934/dcdsb.2019055 |
[16] |
Xiaoping Zhai, Zhaoyang Yin. Global solutions to the Chemotaxis-Navier-Stokes equations with some large initial data. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2829-2859. doi: 10.3934/dcds.2017122 |
[17] |
Anhui Gu, Kening Lu, Bixiang Wang. Asymptotic behavior of random Navier-Stokes equations driven by Wong-Zakai approximations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 185-218. doi: 10.3934/dcds.2019008 |
[18] |
Anhui Gu, Boling Guo, Bixiang Wang. Long term behavior of random Navier-Stokes equations driven by colored noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2495-2532. doi: 10.3934/dcdsb.2020020 |
[19] |
Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure and Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613 |
[20] |
Matthew Gardner, Adam Larios, Leo G. Rebholz, Duygu Vargun, Camille Zerfas. Continuous data assimilation applied to a velocity-vorticity formulation of the 2D Navier-Stokes equations. Electronic Research Archive, 2021, 29 (3) : 2223-2247. doi: 10.3934/era.2020113 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]