In this paper we prove the almost sure existence of global weak solution to the 3D incompressible Navier-Stokes Equation for a set of large data in $\dot{H}^{-α}(\mathbb{R}^{3})$ or $\dot{H}^{-α}(\mathbb{T}^{3})$ with $0<α≤ 1/2$. This is achieved by randomizing the initial data and showing that the energy of the solution modulus the linear part keeps finite for all $t≥0$. Moreover, the energy of the solutions is also finite for all $t>0$. This improves the recent result of Nahmod, Pavlović and Staffilani on (SIMA) in which $α$ is restricted to $0<α<\frac{1}{4}$.
Citation: |
Á. Bényi, T. Oh and O. Pocovinicu, Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS, Excursions in Harmonic Analysis, Appl.
Numer. Harmon. Anal. , Birkhäuser/Springer, Cham, 4 (2015), 3-25.
![]() ![]() |
|
Á. Bényi
, T. Oh
and O. Pocovinicu
, On the probabilistic Cauchy theory of the cubic nonlinear Schrodinger equation on $\mathbb{R}^{d}, d≥ 3$, Trans. Amer. Math. Soc. Ser. B, 2 (2015)
, 1-50.
doi: 10.1090/btran/6.![]() ![]() ![]() |
|
J. Bourgain
, Invariant measures for the 2D defocusing nonliear Schrödinger equation, Comm. Math. Phys., 176 (1996)
, 421-445.
doi: 10.1007/BF02099556.![]() ![]() ![]() |
|
N. Burq
and N. Tzvetkov
, Random Data Cauchy theory for supercritical wave equation Ⅰ:Local theory, Invent. Math., 173 (2008)
, 449-475.
doi: 10.1007/s00222-008-0124-z.![]() ![]() ![]() |
|
N. Burq
and N. Tzvetkov
, Random Data Cauchy theory for supercritical wave equation Ⅱ:A global existence result, Invent. Math., 173 (2008)
, 477-496.
doi: 10.1007/s00222-008-0123-0.![]() ![]() ![]() |
|
N. Burq
and N. Tzvetkov
, Probabilistic Well-Posedness for the Cubic Wave Equation, J. Eur. Math. Soc., 16 (2014)
, 1-30.
doi: 10.4171/JEMS/426.![]() ![]() ![]() |
|
C. Deng
and S. Cui
, Random data Cauchy problem for the Navier-Stokes equation on $\mathbb{T}^{3}$, J.Differential Equation, 251 (2011)
, 902-917.
doi: 10.1016/j.jde.2011.05.002.![]() ![]() ![]() |
|
E. Hopf
, Über die Aufgangswertaufgabe für die hydrodynamischen Grundliechungen, Math. Nachr., 4 (1951)
, 213-231.
doi: 10.1002/mana.3210040121.![]() ![]() ![]() |
|
P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman Hall/CRC Res. Notes Math. 431, Chapman & Hall/CTC, Boca Raton, FL, 2002.
doi: 10.1201/9781420035674.![]() ![]() ![]() |
|
J. Leray
, Essai sur mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934)
, 193-248.
doi: 10.1007/BF02547354.![]() ![]() ![]() |
|
J. Lührmann
and D. Mendelson
, Random data Cauchy theory for nonlinear wave equations of Power-Type on $\mathbb{R}^{3}$, Comm. Partial Differential Equations, 39 (2014)
, 2262-2283.
doi: 10.1080/03605302.2014.933239.![]() ![]() ![]() |
|
A. R. Nahmod
, N. Pavlović
and G. Staffilani
, Almost sure existence of global weak solutions for supercritical Navier-Stokes equation, SIAM J. Math. Anal., 45 (2013)
, 3431-3452.
doi: 10.1137/120882184.![]() ![]() ![]() |
|
R. E. A. C. Paley and A. Zygmund, On some series of functions (1)(2)(3), Proc. Camb. Philos. Soc., 26 (1930), 337-357,458-474; 28 (1932), 190-205.
![]() |
|
R. Témam, Navier-Stokes Equations: Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2. North-Holland Publishing Co. , Amsterdam-New York, 1979.
![]() ![]() |
|
T. Zhang
and D. Fang
, Random data Cauchy theory for the generalized incompressible Navier-Stokes equations, J. Math. Fluid Mech., 14 (2012)
, 311-324.
doi: 10.1007/s00021-011-0069-7.![]() ![]() ![]() |
|
T. Zhang
and D. Fang
, Random data Cauchy theory for the incompressible three dimensional Navier-Stokes Equation, Proc. Amer. Math. Soc., 139 (2011)
, 2827-2837.
doi: 10.1090/S0002-9939-2011-10762-7.![]() ![]() ![]() |