In this paper we prove that a postcritically finite rational map with non-empty Fatou set is Thurston equivalent to an expanding Thurston map if and only if its Julia set is homeomorphic to the standard Sierpiński carpet.
Citation: |
M. Bonk and D. Meyer,
Expanding Thurston Maps, available from https://sites.google.com/site/dmeyersite/publications.
![]() |
|
B. Bonk
, M. Lyubich
and S. Merenkov
, Quasisymmetries of Sierpiński Carpet Julia Sets, Adv. Math., 301 (2016)
, 383-422.
doi: 10.1016/j.aim.2016.06.007.![]() ![]() ![]() |
|
J. W. Cannon
, W. J. Floyd
, R. Kenyon
and W.R. Parry
, Constructing rational maps from subdivision rules, Conform. Geom Dyn., 7 (2003)
, 76-102.
doi: 10.1090/S1088-4173-03-00082-1.![]() ![]() ![]() |
|
G. Cui
and Y. Gao
, Wandering continuum for rational maps, Discrete and Continuous Dynamical System, 36 (2016)
, 1321-1329.
![]() ![]() |
|
G. Cui
, W. Peng
and L. Tan
, On a theorem of Rees-Shishikura, Annales de la Faculté des Sciences de Toulouse, 21 (2012)
, 981-993.
doi: 10.5802/afst.1359.![]() ![]() ![]() |
|
G. Cui
, W. Peng
and L. Tan
, Renormalizations and wandering Jordan curves of rational maps, Communications in Mathematical Physics, 344 (2016)
, 67-115.
doi: 10.1007/s00220-016-2623-x.![]() ![]() ![]() |
|
A. Douady
and J. H. Hubbard
, A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993)
, 263-297.
doi: 10.1007/BF02392534.![]() ![]() ![]() |
|
A. Douady and J. H. Hubbard, Étude Dynamique Des Polynômes Complexes,Ⅰ,Ⅱ, Orsay: Publ. Math. Orsay, 1984.
![]() ![]() |
|
D. B. A. Epstein
, Curves on 2-manifolds and isotopies, Acta Math., 115 (1966)
, 83-107.
doi: 10.1007/BF02392203.![]() ![]() ![]() |
|
B. Farb and D. Margalit, A Primer on Mapping Class Group, PMS-49, Princeton University Press, Princeton, NJ, 2012.
![]() ![]() |
|
Y. Gao, P. Haïssinsky, D. Meyer and J. Zeng, Invariant Jordan curves of Sierpiński carpet rational maps, to appear in Ergodic Theory Dynam. Systems, arXiv: 1511.02457.
![]() |
|
O. Lehto, Univalent Functions and Teichmüller Spaces, Springer-Verlag, New York, 1987.
doi: 10.1007/978-1-4613-8652-0.![]() ![]() ![]() |
|
Z. Li, Ergodic Theory of Expanding Thurston Maps, Ph. D thesis, University of California Los Angeles, 2015.
![]() ![]() |
|
M. Lyubich
and Y. Minsky
, Laminations in holomorphic dynamics, J. Diff. Geom., 47 (1997)
, 17-94.
doi: 10.4310/jdg/1214460037.![]() ![]() ![]() |
|
D. Mayer, Expanding Thurston maps as quotients, preprint, arXiv: 0910.2003v1.
![]() |
|
D. Mayer
, Invariant Peano curves of expanding Thurston maps, Acta Math., 210 (2013)
, 95-171.
doi: 10.1007/s11511-013-0091-0.![]() ![]() ![]() |
|
C. McMullen, The classification of conformal dynamical systems, in Current developments in mathematics, 1995(Cambridge, MA), International Press, 1994,323-360.
![]() ![]() |
|
C. McMullen, Automorphisms of rational maps, in Holomorphic Functions and Moduli I(Mathematical Sciences Research Institute Publications, Springer, New York, New York, 10(1988), 31-60.
doi: 10.1007/978-1-4613-9602-4_3.![]() ![]() ![]() |
|
J. Milnor, Dynamics in One Complex Variable, Princeton University Press, 2006.
![]() ![]() |
|
J. Milnor
, Geometry and dynamics of quadratic rational maps, with an appendix by the
author and Tan Lei, Experiment. Math., 2 (1993)
, 37-83.
doi: 10.1080/10586458.1993.10504267.![]() ![]() ![]() |
|
R. L. Moore
, Concerning upper semicontinuous collections of compacta, Trans. Amer. Math. Soc., 27 (1925)
, 416-428.
doi: 10.1090/S0002-9947-1925-1501320-8.![]() ![]() ![]() |
|
Y. Xiao
, W. Qiu
and Y. Yin
, On the dynamics of generalized McMullen maps, Ergod. Th. Dyna. Sys., 34 (2014)
, 2093-2112.
doi: 10.1017/etds.2013.21.![]() ![]() ![]() |
|
G. T. Whyburn
, Topological characterization of the Sierpiński curve, Fund. Math., 45 (1958)
, 320-324.
![]() ![]() |
|
G. T. Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. ⅩⅩⅧ, AMS, Providence, R. I., 1963.
![]() ![]() |